Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 12064, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32694602

ABSTRACT

The medial temporal lobe is one of the most well-studied brain regions affected by Alzheimer's disease (AD). Although the spread of neurofibrillary pathology in the hippocampus throughout the progression of AD has been thoroughly characterized and staged using histology and other imaging techniques, it has not been precisely quantified in vivo at the subfield level using simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI). Here, we investigate alterations in metabolism and volume using [18F]fluoro-deoxyglucose (FDG) and simultaneous time-of-flight (TOF) PET/MRI with hippocampal subfield analysis of AD, mild cognitive impairment (MCI), and healthy subjects. We found significant structural and metabolic changes within the hippocampus that can be sensitively assessed at the subfield level in a small cohort. While no significant differences were found between groups for whole hippocampal SUVr values (p = 0.166), we found a clear delineation in SUVr between groups in the dentate gyrus (p = 0.009). Subfield analysis may be more sensitive for detecting pathological changes using PET-MRI in AD compared to global hippocampal assessment.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Fluorodeoxyglucose F18 , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Magnetic Resonance Imaging , Positron-Emission Tomography , Aged , Alzheimer Disease/etiology , Alzheimer Disease/psychology , Brain/diagnostic imaging , Brain/metabolism , Brain/physiopathology , Case-Control Studies , Female , Hippocampus/physiopathology , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Positron-Emission Tomography/methods
2.
J Alzheimers Dis Rep ; 4(1): 525-536, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33532700

ABSTRACT

BACKGROUND: Recent evidence suggests that the accumulation of iron, specifically ferrous Fe2+, may play a role in the development and progression of neurodegeneration in Alzheimer's disease (AD) through the production of oxidative stress. OBJECTIVE: To localize and characterize iron deposition and oxidation state in AD, we analyzed human hippocampal autopsy samples from four subjects with advanced AD that have been previously characterized with correlative MRI-histology. METHODS: We perform scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and electron energy loss spectroscopy (EELS) in the higher resolution transmission electron microscope on the surface and cross-sections of specific iron-rich regions of interest. RESULTS: Specific previously analyzed regions were visualized using SEM and confirmed to be iron-rich deposits using EDS. Subsequent analysis using focused ion beam cross-sectioning and SEM characterized the iron deposition throughout the 3-D volumes, confirming the presence of iron throughout the deposits, and in two out of four specimens demonstrating colocalization with zinc. Analysis of traditional histology slides showed the analyzed deposits overlapped both with amyloid and tau deposition. Following higher resolution analysis of a single iron deposit using scanning transmission electron microscope (STEM), we demonstrated the potential of monochromated STEM-EELS to discern the relative oxidation state of iron within a deposit. CONCLUSION: These findings suggest that iron is present in the AD hippocampus and can be visualized and characterized using combined MRI and EM techniques. An altered relative oxidation state may suggest a direct link between iron and oxidative stress in AD. These methods thus could potentially measure an altered relative oxidation state that could suggest a direct link between iron and oxidative stress in AD. Furthermore, we have demonstrated the ability to analyze metal deposition alongside commonly used histological markers of AD pathology, paving the way for future insights into the molecular interactions between Aß, tau, iron, and other putative metals, such as zinc.

SELECTION OF CITATIONS
SEARCH DETAIL
...