Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Neurophysiol ; 131(6): 1014-1082, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38489238

ABSTRACT

The cerebral cortex is populated by specialized regions that are organized into networks. Here we estimated networks from functional MRI (fMRI) data in intensively sampled participants. The procedure was developed in two participants (scanned 31 times) and then prospectively applied to 15 participants (scanned 8-11 times). Analysis of the networks revealed a global organization. Locally organized first-order sensory and motor networks were surrounded by spatially adjacent second-order networks that linked to distant regions. Third-order networks possessed regions distributed widely throughout association cortex. Regions of distinct third-order networks displayed side-by-side juxtapositions with a pattern that repeated across multiple cortical zones. We refer to these as supra-areal association megaclusters (SAAMs). Within each SAAM, two candidate control regions were adjacent to three separate domain-specialized regions. Response properties were explored with task data. The somatomotor and visual networks responded to body movements and visual stimulation, respectively. Second-order networks responded to transients in an oddball detection task, consistent with a role in orienting to salient events. The third-order networks, including distinct regions within each SAAM, showed two levels of functional specialization. Regions linked to candidate control networks responded to working memory load across multiple stimulus domains. The remaining regions dissociated across language, social, and spatial/episodic processing domains. These results suggest that progressively higher-order networks nest outward from primary sensory and motor cortices. Within the apex zones of association cortex, there is specialization that repeatedly divides domain-flexible from domain-specialized regions. We discuss implications of these findings, including how repeating organizational motifs may emerge during development.NEW & NOTEWORTHY The organization of cerebral networks was estimated within individuals with intensive, repeat sampling of fMRI data. A hierarchical organization emerged in each individual that delineated first-, second-, and third-order cortical networks. Regions of distinct third-order association networks consistently exhibited side-by-side juxtapositions that repeated across multiple cortical zones, with clear and robust functional specialization among the embedded regions.


Subject(s)
Cerebral Cortex , Magnetic Resonance Imaging , Nerve Net , Humans , Cerebral Cortex/physiology , Cerebral Cortex/diagnostic imaging , Male , Female , Adult , Nerve Net/physiology , Nerve Net/diagnostic imaging , Brain Mapping , Young Adult , Middle Aged
2.
J Neurophysiol ; 130(6): 1602-1615, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37937340

ABSTRACT

A recurring debate concerns whether regions of primate prefrontal cortex (PFC) support domain-flexible or domain-specific processes. Here we tested the hypothesis with functional MRI (fMRI) that side-by-side PFC regions, within distinct parallel association networks, differentially support domain-flexible and domain-specialized processing. Individuals (N = 9) were intensively sampled, and all effects were estimated within their own idiosyncratic anatomy. Within each individual, we identified PFC regions linked to distinct networks, including a dorsolateral PFC (DLPFC) region coupled to the medial temporal lobe (MTL) and an extended region associated with the canonical multiple-demand network. We further identified an inferior PFC region coupled to the language network. Exploration in separate task data, collected within the same individuals, revealed a robust functional triple dissociation. The DLPFC region linked to the MTL was recruited during remembering and imagining the future, distinct from juxtaposed regions that were modulated in a domain-flexible manner during working memory. The inferior PFC region linked to the language network was recruited during sentence processing. Detailed analysis of the trial-level responses further revealed that the DLPFC region linked to the MTL specifically tracked processes associated with scene construction. These results suggest that the DLPFC possesses a domain-specialized region that is small and easily confused with nearby (larger) regions associated with cognitive control. The newly described region is domain specialized for functions traditionally associated with the MTL. We discuss the implications of these findings in relation to convergent anatomical analysis in the monkey.NEW & NOTEWORTHY Competing hypotheses link regions of prefrontal cortex (PFC) to domain-flexible or domain-specific processes. Here, using a precision neuroimaging approach, we identify a domain-specialized region in dorsolateral PFC, coupled to the medial temporal lobe and recruited for scene construction. This region is juxtaposed to, but distinct from, broader PFC regions recruited flexibly for cognitive control. Region distinctions align with broader network differences, suggesting that PFC regions gain dissociable processing properties via segregated anatomical projections.


Subject(s)
Brain Mapping , Dorsolateral Prefrontal Cortex , Animals , Brain Mapping/methods , Prefrontal Cortex/physiology , Memory, Short-Term/physiology , Temporal Lobe/physiology , Magnetic Resonance Imaging/methods
3.
bioRxiv ; 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37609246

ABSTRACT

The human cerebral cortex is populated by specialized regions that are organized into networks. Here we estimated networks using a Multi-Session Hierarchical Bayesian Model (MS-HBM) applied to intensively sampled within-individual functional MRI (fMRI) data. The network estimation procedure was initially developed and tested in two participants (each scanned 31 times) and then prospectively applied to 15 new participants (each scanned 8 to 11 times). Detailed analysis of the networks revealed a global organization. Locally organized first-order sensory and motor networks were surrounded by spatially adjacent second-order networks that also linked to distant regions. Third-order networks each possessed regions distributed widely throughout association cortex. Moreover, regions of distinct third-order networks displayed side-by-side juxtapositions with a pattern that repeated similarly across multiple cortical zones. We refer to these as Supra-Areal Association Megaclusters (SAAMs). Within each SAAM, two candidate control regions were typically adjacent to three separate domain-specialized regions. Independent task data were analyzed to explore functional response properties. The somatomotor and visual first-order networks responded to body movements and visual stimulation, respectively. A subset of the second-order networks responded to transients in an oddball detection task, consistent with a role in orienting to salient or novel events. The third-order networks, including distinct regions within each SAAM, showed two levels of functional specialization. Regions linked to candidate control networks responded to working memory load across multiple stimulus domains. The remaining regions within each SAAM did not track working memory load but rather dissociated across language, social, and spatial / episodic processing domains. These results support a model of the cerebral cortex in which progressively higher-order networks nest outwards from primary sensory and motor cortices. Within the apex zones of association cortex there is specialization of large-scale networks that divides domain-flexible from domain-specialized regions repeatedly across parietal, temporal, and prefrontal cortices. We discuss implications of these findings including how repeating organizational motifs may emerge during development.

4.
J Neurophysiol ; 129(1): 17-40, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36197013

ABSTRACT

Multiple large-scale networks populate human association cortex. Here, we explored the functional properties of these networks by exploiting trial-to-trial variation in component-processing demands. In two behavioral studies (n = 136 and n = 238), participants quantified strategies used to solve individual task trials that spanned remembering, imagining future scenarios, and various control trials. These trials were also all scanned in an independent sample of functional MRI participants (n = 10), each with sufficient data to precisely define within-individual networks. Stable latent factors varied across trials and correlated with trial-level functional responses selectively across networks. One network linked to parahippocampal cortex, labeled Default Network A (DN-A), tracked scene construction, including for control trials that possessed minimal episodic memory demands. To the degree, a trial encouraged participants to construct a mental scene with imagery and awareness about spatial locations of objects or places, the response in DN-A increased. The juxtaposed Default Network B (DN-B) showed no such response but varied in relation to social processing demands. Another adjacent network, labeled Frontoparietal Network B (FPN-B), robustly correlated with trial difficulty. These results support that DN-A and DN-B are specialized networks differentially supporting information processing within spatial and social domains. Both networks are dissociable from a closely juxtaposed domain-general control network that tracks cognitive effort.NEW & NOTEWORTHY Tasks shown to differentially recruit parallel association networks are multifaceted, leaving open questions about network processes. Here, examining trial-to-trial network response properties in relation to trial traits reveals new insights into network functions. In particular, processes linked to scene construction selectively recruit a distributed network with links to parahippocampal and retrosplenial cortices, including during trials designed not to rely on the personal past. Adjacent networks show distinct patterns, providing novel evidence of functional specialization.


Subject(s)
Cerebral Cortex , Memory, Episodic , Humans , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Cognition , Mental Recall/physiology , Gyrus Cinguli , Magnetic Resonance Imaging/methods , Brain Mapping
5.
bioRxiv ; 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38187548

ABSTRACT

The hippocampus possesses anatomical differences along its long axis. Here the functional specialization of the human hippocampal long axis was explored using network-anchored precision functional MRI (N = 11) paired with behavioral analyses (N=266). Functional connectivity analyses demonstrated that the anterior hippocampus was preferentially correlated with a cerebral network associated with remembering, while the posterior hippocampus was correlated with a distinct network associated with behavioral salience. Seed regions placed within the hippocampus recapitulated the distinct cerebral networks. Functional characterization using task data within the same intensively sampled individuals discovered a functional double dissociation between the anterior and posterior hippocampal regions. The anterior hippocampal region was sensitive to remembering and imagining the future, specifically tracking the process of scene construction, while the posterior hippocampal region displayed transient responses to targets in an oddball detection task and to transitions between task blocks. These findings suggest specialization along the long axis of the hippocampus with differential responses reflecting the functional properties of the partner cerebral networks.

6.
bioRxiv ; 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38187706

ABSTRACT

The human cerebellum possesses multiple regions linked to cerebral association cortex. Here we mapped the cerebellum using precision functional MRI within individual participants (N=15), first estimating regions using connectivity and then prospectively testing functional properties using independent task data. Network estimates in all participants revealed a Crus I / II cerebellar megacluster of five higher-order association networks often with multiple, discontinuous regions for the same network. Seed regions placed within the megaclusters, including the disjointed regions, yielded spatially selective networks in the cerebral cortex. Compelling evidence for functional specialization within the cerebellar megaclusters emerged from the task responses. Reflecting functional distinctions found in the cerebrum, domain-flexible cerebellar regions involved in cognitive control dissociated from distinct domain-specialized regions with differential responses to language, social, and spatial / episodic task demands. These findings provide a clear demonstration that the cerebellum encompasses multiple zones dedicated to cognition, featuring juxtaposed regions specialized for distinct processing domains.

7.
J Neurophysiol ; 128(4): 1051-1073, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36130164

ABSTRACT

Seminal neurophysiological studies in the 1940s discovered two somatomotor maps in the cerebellum-an inverted anterior lobe map and an upright posterior lobe map. Both maps have been confirmed in the human using noninvasive neuroimaging with additional hints of a third map within and near to the cerebellar vermis. Here, we sought direct evidence for the third somatomotor map by using intensive, repeated functional MRI (fMRI) scanning of individuals performing movements across multiple body parts (tongue, hands, glutes, and feet). An initial discovery sample (n = 4, 4 sessions per individual including 576 separate blocks of body movements) yielded evidence for the two established cerebellar somatomotor maps, as well as evidence for a third discontinuous foot representation within the vermis. When the left versus right foot movements were directly contrasted, the third representation could be clearly distinguished from the second representation in multiple individuals. Functional connectivity from seed regions in the third somatomotor representation confirmed anatomically specific connectivity with the cerebral cortex, paralleling the patterns observed for the two well-established maps. All results were prospectively replicated in an independent dataset with new individuals (n = 4). These collective findings provide direct support for a third somatomotor representation in the vermis of the cerebellum that may be part of a third map. We discuss the relations of this candidate third map to the broader topography of the cerebellum as well as its implications for understanding the specific organization of the human cerebellar vermis where distinct zones appear functionally specialized for somatomotor and visual domains.NEW & NOTEWORTHY A third somatomotor representation exists in the vermis of the human cerebellum. Evidence for this elusive representation arises specifically from mapping the foot. Separate foot representations distinguish the third from the nearby second somatomotor representation. A third somatomotor representation in the posterior vermis supports a large-scale organization hypothesis in which the cerebellum possesses three sets of roughly homotopic representations of the full cerebrum.


Subject(s)
Brain Mapping , Cerebellum , Brain Mapping/methods , Cerebellum/physiology , Cerebral Cortex/physiology , Humans , Magnetic Resonance Imaging/methods , Movement/physiology
8.
Curr Opin Behav Sci ; 40: 120-129, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34263017

ABSTRACT

Humans can reason about other minds, comprehend language and imagine. These abilities depend on association regions that exhibit evolutionary expansion and prolonged postnatal development. Precision maps within individuals reveal these expanded zones are populated by multiple specialized networks that each possess a spatially distributed motif but remain anatomically separated throughout the cortex for language, social and mnemonic / spatial functions. Rather than converge on multi-domain regions or hubs, these networks include distinct regions within rostral prefrontal and temporal association zones. To account for these observations, we propose the expansion-fractionation-specialization (EFS) hypothesis: evolutionary expansion of human association cortex may have allowed for an archetype distributed network to fractionate into multiple specialized networks. Human development may recapitulate fractionation and specialization when these abilities emerge.

9.
J Neurophysiol ; 125(2): 358-384, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33427596

ABSTRACT

Distinct regions of the cerebellum connect to separate regions of the cerebral cortex forming a complex topography. Although cerebellar organization has been examined in group-averaged data, study of individuals provides an opportunity to discover features that emerge at a higher spatial resolution. Here, functional connectivity MRI was used to examine the cerebellum of two intensively sampled individuals (each scanned 31 times). Connectivity to somatomotor cortex showed the expected crossed laterality and topography of the body maps. A surprising discovery was connectivity to the primary visual cortex along the vermis with evidence for representation of the central field. Within the hemispheres, each individual displayed a hierarchical progression from the inverted anterior lobe somatomotor map through to higher-order association zones. The hierarchy ended at Crus I/II and then progressed in reverse order through to the upright somatomotor map in the posterior lobe. Evidence for a third set of networks was found in the most posterior extent of the cerebellum. Detailed analysis of the higher-order association networks revealed robust representations of two distinct networks linked to the default network, multiple networks linked to cognitive control, as well as a separate representation of a language network. Although idiosyncratic spatial details emerged between subjects, each network could be detected in both individuals, and seed regions placed within the cerebellum recapitulated the full extent of the spatially specific cerebral networks. The observation of multiple networks in juxtaposed regions at the Crus I/II apex confirms the importance of this zone to higher-order cognitive function and reveals new organizational details.NEW & NOTEWORTHY Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones representing distinct networks. In addition, individuals reveal idiosyncratic organizational features.


Subject(s)
Cerebellum/physiology , Connectome , Female , Humans , Magnetic Resonance Imaging , Young Adult
10.
J Neurophysiol ; 124(5): 1415-1448, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32965153

ABSTRACT

Using procedures optimized to explore network organization within the individual, the topography of a candidate language network was characterized and situated within the broader context of adjacent networks. The candidate network was first identified using functional connectivity and replicated across individuals, acquisition tasks, and analytical methods. In addition to classical language regions near the perisylvian cortex and temporal pole, regions were also observed in dorsal posterior cingulate, midcingulate, and anterior superior frontal and inferior temporal cortex. The candidate network was selectively activated when processing meaningful (as contrasted with nonword) sentences, whereas spatially adjacent networks showed minimal or even decreased activity. Results were replicated and triplicated across two prospectively acquired cohorts. Examined in relation to adjacent networks, the topography of the language network was found to parallel the motif of other association networks, including the transmodal association networks linked to theory of mind and episodic remembering (often collectively called the default network). The several networks contained juxtaposed regions in multiple association zones. Outside of these juxtaposed higher-order networks, we further noted a distinct frontotemporal network situated between language regions and a frontal orofacial motor region and a temporal auditory region. A possibility is that these functionally related sensorimotor regions might anchor specialization of neighboring association regions that develop into a language network. What is most striking is that the canonical language network appears to be just one of multiple similarly organized, differentially specialized distributed networks that populate the evolutionarily expanded zones of human association cortex.NEW & NOTEWORTHY This research shows that a language network can be identified within individuals using functional connectivity. Organizational details reveal that the language network shares a common spatial motif with other association networks, including default and frontoparietal control networks. The language network is activated by language task demands, whereas closely juxtaposed networks are not, suggesting that similarly organized but differentially specialized distributed networks populate association cortex.


Subject(s)
Cerebral Cortex/physiology , Functional Laterality/physiology , Language , Adult , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/physiology , Young Adult
11.
J Neurophysiol ; 123(3): 1144-1179, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32049593

ABSTRACT

Association cortex is organized into large-scale distributed networks. One such network, the default network (DN), is linked to diverse forms of internal mentation, opening debate about whether shared or distinct anatomy supports multiple forms of cognition. Using within-individual analysis procedures that preserve idiosyncratic anatomical details, we probed whether multiple tasks from two domains, episodic projection and theory of mind (ToM), rely on the same or distinct networks. In an initial experiment (6 subjects, each scanned 4 times), we found evidence that episodic projection and ToM tasks activate separate regions distributed throughout the cortex, with adjacent regions in parietal, temporal, prefrontal, and midline zones. These distinctions were predicted by the hypothesis that the DN comprises two parallel, interdigitated networks. One network, linked to parahippocampal cortex (PHC), is preferentially recruited during episodic projection, including both remembering and imagining the future. A second juxtaposed network, which includes the temporoparietal junction (TPJ), is differentially engaged during multiple forms of ToM. In two prospectively acquired independent experiments, we replicated and triplicated the dissociation (each with 6 subjects scanned 4 times). Furthermore, the dissociation was found in all zones when analyzed independently, including robustly in midline regions previously described as hubs. The TPJ-linked network is interwoven with the PHC-linked network across the cortex, making clear why it is difficult to fully resolve the two networks in group-averaged or lower-resolution data. These results refine our understanding of the functional-anatomical organization of association cortex and raise fundamental questions about how specialization might arise in parallel, juxtaposed association networks.NEW & NOTEWORTHY Two distributed, interdigitated networks exist within the bounds of the canonical default network. Here we used repeated scanning of individuals, across three independent samples, to provide evidence that tasks requiring episodic projection or theory of mind differentially recruit the two networks across multiple cortical zones. The two distributed networks thus appear to preferentially subserve distinct functions.


Subject(s)
Cerebral Cortex/physiology , Connectome , Default Mode Network/physiology , Memory, Episodic , Nerve Net/physiology , Social Perception , Theory of Mind/physiology , Adolescent , Adult , Cerebral Cortex/diagnostic imaging , Default Mode Network/diagnostic imaging , Female , Humans , Imagination/physiology , Magnetic Resonance Imaging , Male , Mental Recall/physiology , Nerve Net/diagnostic imaging , Young Adult
12.
Nat Rev Neurosci ; 20(10): 593-608, 2019 10.
Article in English | MEDLINE | ID: mdl-31492945

ABSTRACT

Discoveries over the past two decades demonstrate that regions distributed throughout the association cortex, often called the default network, are suppressed during tasks that demand external attention and are active during remembering, envisioning the future and making social inferences. This Review describes progress in understanding the organization and function of networks embedded within these association regions. Detailed high-resolution analyses of single individuals suggest that the default network is not a single network, as historically described, but instead comprises multiple interwoven networks. The multiple networks share a common organizational motif (also evident in marmoset and macaque anatomical circuits) that might support a general class of processing function dependent on internally constructed rather than externally constrained representations, with each separate interwoven network specialized for a distinct processing domain. Direct neuronal recordings in humans and monkeys reveal evidence for competitive relationships between the internally and externally oriented networks. Findings from rodent studies suggest that the thalamus might be essential to controlling which networks are engaged through specialized thalamic reticular neurons, including antagonistic subpopulations. These association networks (and presumably thalamocortical circuits) are expanded in humans and might be particularly vulnerable to dysregulation implicated in mental illness.


Subject(s)
Association Learning/physiology , Brain/anatomy & histology , Brain/physiology , Nerve Net/anatomy & histology , Nerve Net/physiology , Animals , Brain/diagnostic imaging , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging
13.
Psychol Sci ; 29(11): 1832-1845, 2018 11.
Article in English | MEDLINE | ID: mdl-30295562

ABSTRACT

Large-scale cooperation is a hallmark of our species and appears to be unique among primates. Yet the evolutionary mechanisms that drove the emergence of humanlike patterns of cooperation remain unclear. Studying the cognitive processes underlying cooperative behavior in apes, our closest living relatives, can help identify these mechanisms. Accordingly, we employed a novel test battery to assess the willingness of 40 chimpanzees to donate resources, instrumentally help others, and punish a culpable thief. We found that chimpanzees were faster to make prosocial than selfish choices and that more prosocial individuals made the fastest responses. Further, two measures of self-control did not predict variation in prosocial responding, and individual performance across cooperative tasks did not covary. These results show that chimpanzees and humans share key cognitive processes for cooperation, despite differences in the scope of their cooperative behaviors.


Subject(s)
Behavior, Animal , Biological Evolution , Cooperative Behavior , Pan troglodytes/physiology , Self-Control , Altruism , Animals , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...