Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pflugers Arch ; 475(5): 569-581, 2023 05.
Article in English | MEDLINE | ID: mdl-36881190

ABSTRACT

Inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) are homologous cation channels that mediate release of Ca2+ from the endoplasmic/sarcoplasmic reticulum (ER/SR) and thereby are involved in many physiological processes. In previous studies, we determined that when the D2594 residue, located at or near the gate of the IP3R type 1, was replaced by lysine (D2594K), a gain of function was obtained. This mutant phenotype was characterized by increased IP3 sensitivity. We hypothesized the IP3R1-D2594 determines the ligand sensitivity of the channel by electrostatically affecting the stability of the closed and open states. To test this possibility, the relationship between the D2594 site and IP3R1 regulation by IP3, cytosolic, and luminal Ca2+ was determined at the cellular, subcellular, and single-channel levels using fluorescence Ca2+ imaging and single-channel reconstitution. We found that in cells, D2594K mutation enhances the IP3 ligand sensitivity. Single-channel IP3R1 studies revealed that the conductance of IP3R1-WT and -D2594K channels is similar. However, IP3R1-D2594K channels exhibit higher IP3 sensitivity, with substantially greater efficacy. In addition, like its wild type (WT) counterpart, IP3R1-D2594K showed a bell-shape cytosolic Ca2+-dependency, but D2594K had greater activity at each tested cytosolic free Ca2+ concentration. The IP3R1-D2594K also had altered luminal Ca2+ sensitivity. Unlike IP3R1-WT, D2594K channel activity did not decrease at low luminal Ca2+ levels. Taken together, our functional studies indicate that the substitution of a negatively charged residue by a positive one at the channels' pore cytosolic exit affects the channel's gating behavior thereby explaining the enhanced ligand-channel's sensitivity.


Subject(s)
Calcium Signaling , Endoplasmic Reticulum , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Ligands , Mutation , Endoplasmic Reticulum/metabolism , Calcium/metabolism
2.
Front Neuroanat ; 12: 85, 2018.
Article in English | MEDLINE | ID: mdl-30483070

ABSTRACT

Most terrestrial animals demonstrate an autonomic reflex that facilitates survival during prolonged submersion under water. This diving response is characterized by bradycardia, apnea and selective increases in peripheral vascular resistance. Stimulation of the nose and nasal passages is thought to be primarily responsible for providing the sensory afferent signals initiating this protective reflex. Consequently, the primary objective of this research was to determine the central terminal projections of nerves innervating the external nose, nasal vestibule and nasal passages of rats. We injected wheat germ agglutinin (WGA) into specific external nasal locations, into the internal nasal passages of rats both with and without intact anterior ethmoidal nerves (AENs), and directly into trigeminal nerves innervating the nose and nasal region. The central terminations of these projections within the medulla were then precisely mapped. Results indicate that the internal nasal branch of the AEN and the nasopalatine nerve, but not the infraorbital nerve (ION), provide primary innervation of the internal nasal passages. The results also suggest afferent fibers from the internal nasal passages, but not external nasal region, project to the medullary dorsal horn (MDH) in an appropriate anatomical way to cause the activation of secondary neurons within the ventral MDH that express Fos protein during diving. We conclude that innervation of the anterior nasal passages by the AEN and nasopalatine nerve is likely to provide the afferent information responsible for the activation of secondary neurons within MDH during voluntary diving in rats.

3.
Physiol Rep ; 6(15): e13830, 2018 08.
Article in English | MEDLINE | ID: mdl-30105807

ABSTRACT

In response to stimulation of the nasal passages with volatile ammonia vapors, the nasopharyngeal reflex produces parasympathetically mediated bradycardia, sympathetically mediated increased peripheral vascular tone, and apnea. The anterior ethmoidal nerve (AEN), which innervates the anterior nasal mucosa, is thought to be primarily responsible for providing the sensory afferent signals that initiate these protective reflexes, as bilateral sectioning causes an attenuation of this response. However, recent evidence has shown cardiovascular responses to nasal stimulation with ammonia vapors are fully intact 9 days after bilateral AEN sectioning, and are similar to control animals without bilaterally sectioned AENs. To investigate this restoration of the nasopharyngeal response, we recorded the cardiorespiratory responses to nasal stimulation with ammonia vapors immediately after, and 3 and 9 days after, bilateral AEN sectioning. We also processed brainstem tissue for Fos to determine how the restoration of the nasopharyngeal response would affect the activity of neurons in the medullary dorsal horn (MDH), the part of the ventral spinal trigeminal nucleus caudalis region that receives primary afferent signals from the nose and nasal passages. We found 3 days after bilateral AEN sectioning the cardiorespiratory responses to nasal stimulation are partially restored. The bradycardic response to nasal stimulation is significantly more intense 3 days after AEN sectioning compared to Acute AEN sectioning. Surprisingly, 3 days after AEN sectioning the number of Fos-positive neurons within MDH decreased, even though the cardiorespiratory responses to nasal stimulation intensified. Collectively these findings indicate that, besides the AEN, there are alternate sensory pathways that can activate neurons within the trigeminal nucleus in response to nasal stimulation. The findings further suggest trigeminal neuronal plasticity involving these alternate sensory pathways occurs in as few as 3 days after bilateral AEN sectioning. Finally, activation of even a significantly reduced number of MDH neurons is sufficient to initiate the nasopharyngeal response.


Subject(s)
Ethmoid Bone/innervation , Nasal Mucosa/innervation , Neurons, Afferent/physiology , Reflex/physiology , Afferent Pathways/physiology , Ammonia , Animals , Bradycardia/physiopathology , Male , Neuronal Plasticity/physiology , Rats, Sprague-Dawley , Respiratory Rate/physiology , Smell/physiology , Stimulation, Chemical , Trigeminal Nuclei/physiopathology
4.
Front Physiol ; 7: 148, 2016.
Article in English | MEDLINE | ID: mdl-27148082

ABSTRACT

This research was designed to investigate the role of the anterior ethmoidal nerve (AEN) during repetitive trained diving in rats, with specific attention to activation of afferent and efferent brainstem nuclei that are part of this reflexive response. The AEN innervates the nose and nasal passages and is thought to be an important component of the afferent limb of the diving response. Male Sprague-Dawley rats (N = 24) were trained to swim and dive through a 5 m underwater maze. Some rats (N = 12) had bilateral sectioning of the AEN, others a Sham surgery (N = 12). Twelve rats (6 AEN cut and 6 Sham) had 24 post-surgical dive trials over 2 h to activate brainstem neurons to produce Fos, a neuronal activation marker. Remaining rats were non-diving controls. Diving animals had significantly more Fos-positive neurons than non-diving animals in the caudal pressor area, ventral medullary dorsal horn, ventral paratrigeminal nucleus, nucleus tractus solitarius, rostral ventrolateral medulla, Raphe nuclei, A5, Locus Coeruleus, and Kölliker-Fuse area. There were no significant differences in brainstem Fos labeling in rats diving with and without intact AENs. Thus, the AENs are not required for initiation of the diving response. Other nerve(s) that innervate the nose and nasal passages, and/or suprabulbar activation of brainstem neurons, may be responsible for the pattern of neuronal activation observed during repetitive trained diving in rats. These results help define the central neuronal circuitry of the mammalian diving response.

5.
Biometals ; 29(1): 131-46, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26715107

ABSTRACT

Cadmium (Cd) is a nephrotoxic environmental pollutant that causes insidious injury to the proximal tubule that results in severe polyuria and proteinuria. Cystatin C is a low molecular weight protein that is being evaluated as a serum and urinary biomarker for various types of ischemic and nephrotoxic renal injury. The objective of the present study was to determine if cystatin C might be a useful early biomarker of Cd nephrotoxicity. Male Sprague-Dawley rats were given daily injections of Cd for up to 12 weeks. At 3, 6, 9 and 12 weeks, urine samples were analyzed for cystatin C, protein, creatinine, ß2 microglobulin and kidney injury molecule-1. The results showed that Cd caused a significant increase in the urinary excretion of cystatin C that occurred 3-4 weeks before the onset of polyuria and proteinuria. Serum levels of cystatin C were not altered by Cd. Immunolabeling studies showed that Cd caused the relocalization of cystatin C from the cytoplasm to the apical surface of the epithelial cells of the proximal tubule. The Cd-induced changes in cystatin C labelling paralleled those of the brush border transport protein, megalin, which has been implicated as a mediator of cystatin C uptake in the proximal tubule. These results indicate that Cd increases the urinary excretion of cystatin C, and they suggest that this effect may involve disruption of megalin-mediated uptake of cystatin C by epithelial cells of the proximal tubule.


Subject(s)
Biomarkers/urine , Cadmium/toxicity , Cystatin C/urine , Kidney Tubules, Proximal/metabolism , Animals , Biomarkers/blood , Cadmium/administration & dosage , Cell Adhesion Molecules/blood , Creatinine/blood , Cystatin C/blood , Environmental Pollutants , Humans , Kidney Tubules, Proximal/injuries , Kidney Tubules, Proximal/pathology , Male , Rats
6.
Physiol Rep ; 1(6): e00141, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24400143

ABSTRACT

The diving response is characterized by bradycardia, apnea, and increased peripheral resistance. This reflex response is initiated by immersing the nose in water. Because the anterior ethmoidal nerve (AEN) innervates the nose, our hypothesis was that intact AENs are essential for initiating the diving response in voluntarily diving rats. Heart rate (HR) and arterial blood pressure (BPa) were monitored using implanted biotransmitters. Sprague-Dawley rats were trained to voluntarily swim 5 m underwater. During diving, HR decreased from 480 ± 15 to 99 ± 5 bpm and BPa increased from 136 ± 2 to 187 ± 3 mmHg. Experimental rats (N = 9) then received bilateral AEN sectioning, while Sham rats (N = 8) did not. During diving in Experimental rats 7 days after AEN surgery, HR decreased from 478 ± 13 to 76 ± 4 bpm and BPa increased from 134 ± 3 to 186 ± 4 mmHg. Responses were similar in Sham rats. Then, during nasal stimulation with ammonia vapors in urethane-anesthetized Experimental rats, HR decreased from 368 ± 7 to 83 ± 4 bpm, and BPa increased from 126 ± 7 to 175 ± 4 mmHg. Responses were similar in Sham rats. Thus, 1 week after being sectioned the AENs are not essential for initiating a full cardiorespiratory response during both voluntary diving and nasal stimulation. We conclude that other nerve(s) innervating the nose are able to provide an afferent signal sufficient to initiate the diving response, although neuronal plasticity within the medullary dorsal horn may be necessary for this to occur.

7.
Am J Physiol Regul Integr Comp Physiol ; 298(1): R224-34, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19923359

ABSTRACT

The mammalian diving response, consisting of apnea, bradycardia, and increased total peripheral resistance, can be modified by conscious awareness, fear, and anticipation. We wondered whether swim and dive training in rats would 1) affect the magnitude of the cardiovascular responses during voluntary and forced diving, and 2) whether this training would reduce or eliminate any stress due to diving. Results indicate Sprague-Dawley rats have a substantial diving response. Immediately upon submersion, heart rate (HR) decreased by 78%, from 453 +/- 12 to 101 +/- 8 beats per minute (bpm), and mean arterial pressure (MAP) decreased 25%, from 143 +/- 1 to 107 +/- 5 mmHg. Approximately 4.5 s after submergence, MAP had increased to a maximum 174 +/- 3 mmHg. Blood corticosterone levels indicate trained rats find diving no more stressful than being held by a human, while untrained rats find swimming and diving very stressful. Forced diving is stressful to both trained and untrained rats. The magnitude of bradycardia was similar during both voluntary and forced diving, while the increase in MAP was greater during forced diving. The diving response of laboratory rats, therefore, appears to be dissimilar from that of other animals, as most birds and mammals show intensification of diving bradycardia during forced diving compared with voluntary diving. Rats may exhibit an accentuated antagonism between the parasympathetic and sympathetic branches of the autonomic nervous system, such that in the autonomic control of HR, parasympathetic activity overpowers sympathetic activity. Additionally, laboratory rats may lack the ability to modify the degree of parasympathetic outflow to the heart during an intense cardiorespiratory response (i.e., the diving response).


Subject(s)
Behavior, Animal/physiology , Cardiovascular Physiological Phenomena , Diving/physiology , Endocrine System/physiology , Swimming/physiology , Animals , Blood Pressure/physiology , Corticosterone/blood , Heart Rate/physiology , Male , Models, Animal , Parasympathetic Nervous System/physiology , Rats , Rats, Sprague-Dawley , Sympathetic Nervous System/physiology
8.
Brain Res ; 1298: 131-44, 2009 Nov 17.
Article in English | MEDLINE | ID: mdl-19732757

ABSTRACT

The anterior ethmoidal nerve (AEN) innervates the nasal passages and external nares, and serves as the afferent limb of the nasopharyngeal and diving responses. However, although 65% of the AEN is composed of unmyelinated fibers, it has not been determined whether this afferent signal is carried by unmyelinated or myelinated fibers. We used the transganglionic tracers WGA-HRP, IB4-HRP, and CTB-HRP to trace the central projections of the AEN of the rat. Interpretation of the labeling patterns suggests that AEN unmyelinated fibers project primarily to the ventral tip of the ipsilateral medullary dorsal horn (MDH) at the level of the area postrema. Other unmyelinated projections were to the ventral paratrigeminal nucleus and ventrolateral medulla, specifically the Bötzinger and RVLM/C1 regions. Myelinated AEN fibers projected to the ventral paratrigeminal and mesencephalic trigeminal nuclei. Stimulating the nasal passages of urethane-anesthetized rats with ammonia vapors produced the nasopharyngeal response that included apnea, bradycardia and an increase in arterial blood pressure. Central projections of the AEN co-localized with neurons within both MDH and RVLM/C1 that were activated by nasal stimulation. Within the ventral MDH the density of AEN terminal projections positively correlated with the rostral-caudal location of activated neurons, especially at and just caudal to the obex. We conclude that unmyelinated AEN terminal projections are involved in the activation of neurons in the MDH and ventrolateral medulla that participate in the nasopharyngeal response in the rat. We also found that IB4-HRP was a much less robust tracer than WGA-HRP.


Subject(s)
Medulla Oblongata/metabolism , Nasal Cavity/innervation , Nerve Fibers, Unmyelinated/metabolism , Neurons/metabolism , Smell/physiology , Analysis of Variance , Animals , Blood Pressure/physiology , Fluorescent Antibody Technique , Heart Rate/physiology , Image Processing, Computer-Assisted , Male , Medulla Oblongata/physiology , Microscopy, Fluorescence , Nasal Cavity/metabolism , Nasopharynx/innervation , Nasopharynx/metabolism , Nerve Fibers, Unmyelinated/physiology , Neural Pathways/metabolism , Neural Pathways/physiology , Neuronal Tract-Tracers , Neurons/physiology , Odorants , Proto-Oncogene Proteins c-fos/metabolism , Rats , Signal Processing, Computer-Assisted , Trigeminal Ganglion/metabolism , Trigeminal Ganglion/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...