Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Processes ; 204: 104802, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36509355

ABSTRACT

A fundamental goal of animal behavior research is to discover the proximate mechanisms driving individual behavioral differences. Biogenic amines are known to mediate various aspects of behavior across many species, including aggression, one of the most commonly measured behavioral traits in animals. Arthropods provide an excellent system to manipulate biogenic amines and quantify subsequent behavioral changes. Here, we investigated the role of dopamine (DA) and serotonin (5-HT) on foraging aggression in western black widow spiders (Latrodectus hesperus), as measured by the number of attacks on a simulated prey animal in the web. We injected spiders with DA or 5-HT and then quantified subsequent changes in behavior over 48 h. Based on previous work on insects and spiders, we hypothesized that increasing DA levels would increase aggression, while increasing 5-HT would decrease aggression. We found that injection of 5-HT did decrease black widow foraging aggression, but DA had no effect. This could indicate that the relationship between DA and aggression is complex, or that DA may not play as important a role in driving aggressive behavior as previously thought, at least in black widow spiders. Aggressive behavior is likely also influenced by other factors, such as inter-individual differences in genetics, metabolic rates, environment, and other neurohormonal controls.


Subject(s)
Black Widow Spider , Spiders , Animals , Serotonin/pharmacology , Dopamine/pharmacology , Behavior, Animal , Aggression
2.
J Air Waste Manag Assoc ; 73(2): 97-108, 2023 02.
Article in English | MEDLINE | ID: mdl-36149875

ABSTRACT

Most Caribbean islands do not have air pollution surveillance programs. Those who live in these countries are exposed to ambient air pollution from a variety of sources including motor vehicles, ocean-going vessels, and Saharan dust. We conducted an air sampling exposure study in Grenada to describe daily changes in fine particulate matter (PM2.5) pollution, and during Saharan dust episodes. Further, we assessed the impacts of COVID-19 public health interventions on PM2.5 concentrations in 2020. Four fixed-site PurpleAir monitors were installed throughout Grenada, and one on the neighboring island of Carriacou. PM2.5 was measured between January 6 and December 31, 2020. We classified each of these days based on whether COVID-19 public health mitigation measures were in place or not. Descriptive analyses were performed to characterize fluctuations in PM2.5, and we assessed the impacts of public health restrictions on PM2.5 using multivariate regression. The mean daily PM2.5 concentration in 2020 was 4.4 µg/m3. During the study period, the minimum daily PM2.5 concentration was 0.7 µg/m3, and the maximum was 20.4 µg/m3. Daily mean PM2.5 concentrations more than doubled on Saharan dust days (8.5 vs 3.6 µg/m3; p < 0.05). The daily mean PM2.5 concentrations were estimated to be 1.2 µg/m3 lower when COVID-19 restrictions were in effect. Ambient PM2.5 concentrations in Grenada are relatively low compared to other countries; however, Saharan dust episodes represent an important source of exposure. Low-cost sensors provide an opportunity to increase surveillance of air pollution in the Caribbean, however their value could be enhanced with the development of correction algorithms that more closely approximate values from reference-grade monitors.Implications: This study describes daily fluctuations in ambient PM2.5 concentrations in Grenada in 2020. Overall, concentrations of PM2.5 were low; however, we found that Saharan dust events cause daily exceedances in PM2.5 above the current 24-hr limits of the World Health Organization. Moreover, the constructed models suggest that public health interventions to reduce the spread of COVID-19 reduced PM2.5 concentrations by 27%.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Environmental Pollutants , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Environmental Pollutants/analysis , Grenada , COVID-19/epidemiology , Air Pollution/analysis , Dust/analysis
3.
Behav Ecol ; 30(2): 455-464, 2019.
Article in English | MEDLINE | ID: mdl-30971860

ABSTRACT

Developmental plasticity is known to influence the mean behavioral phenotype of a population. Yet, studies on how developmental plasticity shapes patterns of variation within populations are comparatively rare and often focus on a subset of developmental cues (e.g., nutrition). One potentially important but understudied developmental experience is social experience, as it is explicitly hypothesized to increase variation among individuals as a way to promote "social niches." To test this, we exposed juvenile black widow spiders (Latrodectus hesperus) to the silk of conspecifics by transplanting them onto conspecific webs for 48 h once a week until adulthood. We also utilized an untouched control group as well as a disturbed group. This latter group was removed from their web at the same time points as the social treatment, but was immediately placed back on their own web. After repeatedly measuring adult behavior and web structure, we found that social rearing drove higher or significant levels of repeatability relative to the other treatments. Repeatability in the social treatment also decreased in some traits, paralleling the decreases observed in the disturbed treatments. Thus, repeated juvenile disturbance may decrease among-individual differences in adult spiders. Yet, social rearing appeared to override the effect of disturbance in some traits, suggesting a prioritization effect. The resulting individual differences were maintained over at least one-third of the adult lifespan and thus appear to represent stable, canalized developmental effects and not temporal state differences. These results provide proximate insight into how a broader range of developmental experiences shape trait variation.

4.
Anim Behav ; 138: 9-17, 2018 Apr.
Article in English | MEDLINE | ID: mdl-30364586

ABSTRACT

Many animals actively defend their offspring using a range of behaviours from calling and mobbing in birds, to physical grappling in crustaceans, and the expression of these behaviours positively scale with offspring value. While this role of behaviour in defence is well studied, very little is known about how other traits, specifically the structure of architectural constructions such as webs and nests, contribute to offspring defence. Additionally, although some tax a show consistent individual differences in offspring defence behaviour, it is completely unknown whether individuals also differ in defensive structures. We addressed these questions in the redback spider, Latrodectus hasselti, by measuring how a female laying an eggcase influences female behaviour and web structure, and whether those traits scale with relative reproductive investment. Our results show that females modified web structure in response to an eggcase, but only the protective elements of web structure positively scaled with the relative value of that eggcase. Finally, despite the significant correlations, fixed effects (e.g. eggcase possession/value) in the models explained only 5-23% of the variation in behaviour and web structure, while the random effect of individual identity explained 46-65% of the variation. This variation drove moderate to high repeatability estimates across all traits, suggesting that some individuals consistently invest relatively more in defence, while some invest less. These results highlight that extended phenotypic traits may be a critical component of offspring defence in some taxa. Furthermore, individual variation in these traits suggest that different reproductive strategies may exist, whereby some individuals invest more in reproduction at a cost to safety/foraging and vice versa.

5.
PLoS One ; 12(6): e0177598, 2017.
Article in English | MEDLINE | ID: mdl-28636616

ABSTRACT

A host of animals build architectural constructions. Such constructions frequently vary with environmental and individual/colony conditions, and their architecture directly influences behavior and fitness. The nests of ant colonies drive and enable many of their collective behaviors, and as such are part of their 'extended phenotype'. Since ant colonies have been recently shown to differ in behavior and life history strategy, we ask whether colonies differ in another trait: the architecture of the constructions they create. We allowed Temnothorax rugatulus rock ants, who create nests by building walls within narrow rock gaps, to repeatedly build nest walls in a fixed crevice but under two environmental conditions. We find that colonies consistently differ in their architecture across environments and over nest building events. Colony identity explained 12-40% of the variation in nest architecture, while colony properties and environmental conditions explained 5-20%, as indicated by the condition and marginal R2 values. When their nest boxes were covered, which produced higher humidity and lower airflow, colonies built thicker, longer, and heavier walls. Colonies also built more robust walls when they had more brood, suggesting a protective function of wall thickness. This is, to our knowledge, the first study to explicitly investigate the repeatability of nestbuilding behavior in a controlled environment. Our results suggest that colonies may face tradeoffs, perhaps between factors such as active vs. passive nest defense, and that selection may act on individual construction rules as a mechanisms to mediate colony-level behavior.


Subject(s)
Behavior, Animal/physiology , Nesting Behavior/physiology , Social Behavior , Animals , Ants , Environment , Time Factors
6.
J Anim Ecol ; 85(4): 915-26, 2016 07.
Article in English | MEDLINE | ID: mdl-26937627

ABSTRACT

1. Developmental experience, for example food abundance during juvenile stages, is known to affect life history and behaviour. However, the life history and behavioural consequences of developmental experience have rarely been studied in concert. As a result, it is still unclear whether developmental experience affects behaviour through changes in life history, or independently of it. 2. The effect of developmental experience on life history and behaviour may also be masked or affected by individual condition during adulthood. Thus, it is critical to tease apart the effects of developmental experience and current individual condition on life history and behaviour. 3. In this study, we manipulated food abundance during development in the western black widow spider, Latrodectus hesperus, by rearing spiders on either a restricted or ad lib diet. We separated developmental from condition-dependent effects by assaying adult foraging behaviour (tendency to attack prey and to stay on out of the refuge following an attack) and web structure multiple times under different levels of satiation following different developmental treatments. 4. Spiders reared under food restriction matured slower and at a smaller size than spiders reared in ad lib conditions. Spiders reared on a restricted diet were more aggressive towards prey and built webs structured for prey capture, while spiders reared on an ad lib diet were less aggressive and built safer webs. Developmental treatment affected which traits were plastic as adults: restricted spiders built safer webs when their adult condition increased, while ad lib spiders reduced their aggression when their adult condition increased. The amount of individual variation in behaviour and web structure varied with developmental treatment. Spiders reared on a restricted diet exhibited consistent variation in all aspects of foraging behaviour and web structure, while spiders reared on an ad lib diet exhibited consistent individual variation in aggression and web weight only. 5. Developmental experience affected the average life history, behaviour and web structure of spiders, but also shaped the amount of phenotypic variation observed among individuals. Surprisingly, developmental experience also determined the particular way in which individuals plastically adjusted their behaviour and web structure to changes in adult condition.


Subject(s)
Black Widow Spider/growth & development , Food Deprivation , Life Cycle Stages , Aggression , Animals , Appetitive Behavior , Black Widow Spider/physiology , Female , Predatory Behavior
7.
Behav Ecol Sociobiol ; 70(11): 1941-1947, 2016 11.
Article in English | MEDLINE | ID: mdl-28584393

ABSTRACT

Among-individual differences in behavior are now a widely studied research-focus within the field of behavioral ecology. Furthermore, elements of an animal's internal state, such as energy or fat reserves, and infection status can have large impacts on behaviors. Despite this, we still know little regarding how state may affect behavioral variation. Recent exposure to pathogens may have a particularly large impact on behavioral expression given that it likely activates costly immune pathways, potentially forcing organism to make behavioral tradeoffs. In this study we investigate how recent exposure to a common bacterial pathogen, Serratia marcescens, affects both the mean behavioral expression and the among-individual differences (i.e. variation) in boldness behavior in the field cricket, Gryllus integer. We find that recent pathogen exposure does not affect mean behavioral expression of the treatment groups, but instead affects behavioral variation and repeatability. Specifically, bacterial exposure drove large among-individual variation, resulting in high levels of repeatability in some aspects of boldness (willingness to emerge into a novel environment), but not others (latency to become active in novel environment), compared to non-infected crickets. Interestingly, sham injection resulted in a universal lack of among-individual differences. Our results highlight the sensitivity of among-individual variance and repeatability estimates to ecological and environmental factors that individuals face throughout their lives.

8.
Int J Evol Biol ; 2012: 593438, 2012.
Article in English | MEDLINE | ID: mdl-23251826

ABSTRACT

Postmating, prezygotic phenotypes are a common mechanism of reproductive isolation. Here, we describe the dynamics of a noncompetitive gametic isolation phenotype (namely, the ability of a male to induce a female to lay eggs) in a group of recently diverged crickets that are primarily isolated from each other by this phenotype. We not only show that heterospecific males are less able to induce females to lay eggs but that there are male by female incompatibilities in this phenotype that occur within populations. We also identify a protein in the female reproductive tract that correlates with the number of eggs that she was induced to lay. Functional genetic tests using RNAi confirm that the function of this protein is linked to egg-laying induction. Moreover, the dysfunction of this protein appears to underlie both within-population incompatibilities and between-species divergence-thus suggesting a common genetic pathway underlies both. However, this is only correlative evidence and further research is needed to assess whether or not the same mutations in the same genes underlie variation at both levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...