Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mutat ; 43(4): 487-498, 2022 04.
Article in English | MEDLINE | ID: mdl-35077597

ABSTRACT

A proper interaction between muscle-derived collagen XXV and its motor neuron-derived receptors protein tyrosine phosphatases σ and δ (PTP σ/δ) is indispensable for intramuscular motor innervation. Despite this, thus far, pathogenic recessive variants in the COL25A1 gene had only been detected in a few patients with isolated ocular congenital cranial dysinnervation disorders. Here we describe five patients from three unrelated families with recessive missense and splice site COL25A1 variants presenting with a recognizable phenotype characterized by arthrogryposis multiplex congenita with or without an ocular congenital cranial dysinnervation disorder phenotype. The clinical features of the older patients remained stable over time, without central nervous system involvement. This study extends the phenotypic and genotypic spectrum of COL25A1 related conditions, and further adds to our knowledge of the complex process of intramuscular motor innervation. Our observations indicate a role for collagen XXV in regulating the appropriate innervation not only of extraocular muscles, but also of bulbar, axial, and limb muscles in the human.


Subject(s)
Arthrogryposis , Arthrogryposis/diagnosis , Arthrogryposis/genetics , Face , Humans , Muscle, Skeletal , Mutation , Phenotype
2.
Blood ; 139(21): 3159-3165, 2022 05 26.
Article in English | MEDLINE | ID: mdl-34758059

ABSTRACT

Individuals with Down syndrome are at increased risk of myeloid leukemia in early childhood, which is associated with acquisition of GATA1 mutations that generate a short GATA1 isoform called GATA1s. Germline GATA1s-generating mutations result in congenital anemia in males. We report on 2 unrelated families that harbor germline GATA1s-generating mutations in which several members developed acute megakaryoblastic leukemia in early childhood. All evaluable leukemias had acquired trisomy 21 or tetrasomy 21. The leukemia characteristics overlapped with those of myeloid leukemia associated with Down syndrome, including age of onset at younger than 4 years, unique immunophenotype, complex karyotype, gene expression patterns, and drug sensitivity. These findings demonstrate that the combination of trisomy 21 and GATA1s-generating mutations results in a unique myeloid leukemia independent of whether the GATA1 mutation or trisomy 21 is the primary or secondary event and suggest that there is a unique functional cooperation between GATA1s and trisomy 21 in leukemogenesis. The family histories also indicate that germline GATA1s-generating mutations should be included among those associated with familial predisposition for myelodysplastic syndrome and leukemia.


Subject(s)
Down Syndrome , GATA1 Transcription Factor , Leukemia, Megakaryoblastic, Acute , Leukemia, Myeloid , Child, Preschool , Down Syndrome/complications , Down Syndrome/genetics , GATA1 Transcription Factor/genetics , Germ-Line Mutation , Humans , Leukemia, Megakaryoblastic, Acute/complications , Leukemia, Megakaryoblastic, Acute/genetics , Leukemia, Myeloid/complications , Male , Mutation , Phenotype , Trisomy
3.
J Exp Med ; 218(6)2021 06 07.
Article in English | MEDLINE | ID: mdl-33857290

ABSTRACT

Advances in genome sequencing have resulted in the identification of the causes for numerous rare diseases. However, many cases remain unsolved with standard molecular analyses. We describe a family presenting with a phenotype resembling inherited thrombocytopenia 2 (THC2). THC2 is generally caused by single nucleotide variants that prevent silencing of ANKRD26 expression during hematopoietic differentiation. Short-read whole-exome and genome sequencing approaches were unable to identify a causal variant in this family. Using long-read whole-genome sequencing, a large complex structural variant involving a paired-duplication inversion was identified. Through functional studies, we show that this structural variant results in a pathogenic gain-of-function WAC-ANKRD26 fusion transcript. Our findings illustrate how complex structural variants that may be missed by conventional genome sequencing approaches can cause human disease.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Intercellular Signaling Peptides and Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Thrombocytopenia/genetics , Adolescent , Adult , Aged , Cell Line , Cell Line, Tumor , Child , Chromosome Breakage , Chromosome Disorders/genetics , Exome/genetics , Female , HEK293 Cells , HeLa Cells , Humans , Male , Middle Aged , Mutation/genetics , Pedigree , Thrombocytopenia/congenital
4.
Article in English | MEDLINE | ID: mdl-32014858

ABSTRACT

Retinol dehydrogenase 12, RDH12, plays a pivotal role in the visual cycle to ensure the maintenance of normal vision. Alterations in activity of this protein result in photoreceptor death and decreased vision beginning at an early age and progressing to substantial vision loss later in life. Here we describe 11 patients with retinal degeneration that underwent next-generation sequencing (NGS) with a targeted panel of all currently known inherited retinal degeneration (IRD) genes and whole-exome sequencing to identify the genetic causality of their retinal disease. These patients display a range of phenotypic severity prompting clinical diagnoses of macular dystrophy, cone-rod dystrophy, retinitis pigmentosa, and early-onset severe retinal dystrophy all attributed to biallelic recessive mutations in RDH12 We report 15 causal alleles and expand the repertoire of known RDH12 mutations with four novel variants: c.215A > G (p.Asp72Gly); c.362T > C (p.Ile121Thr); c.440A > C (p.Asn147Thr); and c.697G > A (p.Val233Ille). The broad phenotypic spectrum observed with biallelic RDH12 mutations has been observed in other genetic forms of IRDs, but the diversity is particularly notable here given the prior association of RDH12 primarily with severe early-onset disease. This breadth emphasizes the importance of broad genetic testing for inherited retinal disorders and extends the pool of individuals who may benefit from imminent gene-targeted therapies.


Subject(s)
Alcohol Oxidoreductases/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Mutation , Phenotype , Retinal Diseases/diagnosis , Retinal Diseases/genetics , Adolescent , Adult , Alleles , Amino Acid Substitution , Child , Child, Preschool , Female , Genetic Association Studies/methods , Genetic Loci , Humans , Male , Optical Imaging , Pedigree , Tomography, Optical Coherence , Exome Sequencing , Young Adult
6.
Nature ; 573(7773): 271-275, 2019 09.
Article in English | MEDLINE | ID: mdl-31485074

ABSTRACT

Development is often assumed to be hardwired in the genome, but several lines of evidence indicate that it is susceptible to environmental modulation with potential long-term consequences, including in mammals1,2. The embryonic germline is of particular interest because of the potential for intergenerational epigenetic effects. The mammalian germline undergoes extensive DNA demethylation3-7 that occurs in large part by passive dilution of methylation over successive cell divisions, accompanied by active DNA demethylation by TET enzymes3,8-10. TET activity has been shown to be modulated by nutrients and metabolites, such as vitamin C11-15. Here we show that maternal vitamin C is required for proper DNA demethylation and the development of female fetal germ cells in a mouse model. Maternal vitamin C deficiency does not affect overall embryonic development but leads to reduced numbers of germ cells, delayed meiosis and reduced fecundity in adult offspring. The transcriptome of germ cells from vitamin-C-deficient embryos is remarkably similar to that of embryos carrying a null mutation in Tet1. Vitamin C deficiency leads to an aberrant DNA methylation profile that includes incomplete demethylation of key regulators of meiosis and transposable elements. These findings reveal that deficiency in vitamin C during gestation partially recapitulates loss of TET1, and provide a potential intergenerational mechanism for adjusting fecundity to environmental conditions.


Subject(s)
Ascorbic Acid/metabolism , DNA Methylation/physiology , Germ Cells/physiology , Transcriptome/physiology , Animals , Ascorbic Acid Deficiency/physiopathology , Cell Count , DNA-Binding Proteins/genetics , Epigenomics , Female , Loss of Function Mutation , Meiosis/physiology , Mice , Models, Animal , Pregnancy , Proto-Oncogene Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...