Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Phys ; 20(5): 815-821, 2024.
Article in English | MEDLINE | ID: mdl-38799981

ABSTRACT

Approaches to developing large-scale superconducting quantum processors must cope with the numerous microscopic degrees of freedom that are ubiquitous in solid-state devices. State-of-the-art superconducting qubits employ aluminium oxide (AlOx) tunnel Josephson junctions as the sources of nonlinearity necessary to perform quantum operations. Analyses of these junctions typically assume an idealized, purely sinusoidal current-phase relation. However, this relation is expected to hold only in the limit of vanishingly low-transparency channels in the AlOx barrier. Here we show that the standard current-phase relation fails to accurately describe the energy spectra of transmon artificial atoms across various samples and laboratories. Instead, a mesoscopic model of tunnelling through an inhomogeneous AlOx barrier predicts percent-level contributions from higher Josephson harmonics. By including these in the transmon Hamiltonian, we obtain orders of magnitude better agreement between the computed and measured energy spectra. The presence and impact of Josephson harmonics has important implications for developing AlOx-based quantum technologies including quantum computers and parametric amplifiers. As an example, we show that engineered Josephson harmonics can reduce the charge dispersion and associated errors in transmon qubits by an order of magnitude while preserving their anharmonicity.

2.
Proc Natl Acad Sci U S A ; 121(4): e2314846121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38227653

ABSTRACT

We develop a photonic description of short, one-dimensional electromagnetic pulses, specifically in the language of electrical transmission lines. Current practice in quantum technology, using arbitrary waveform generators, can readily produce very short, few-cycle pulses in a very-low-noise, low-temperature setting. We argue that these systems attain the limit of producing pure coherent quantum states, in which the vacuum has been displaced for a short time, and therefore over a short spatial extent. When the pulse is bipolar, that is, the integrated voltage of the pulse is zero, then the state can be described by the finite displacement of a single mode. Therefore there is a definite mean number of photons, but which have neither a well-defined frequency nor position. Due to the Paley-Wiener theorem, the two-component photon "wavefunction" of this mode, while somewhat localized, is not strictly bounded in space even if the vacuum displacement that defines it is bounded. When the pulse is unipolar, no photonic description is possible-the photon number can be considered to be divergent. We consider properties that photon counters and quantum non-demolition detectors must have to optimally convert and detect the photons in several example pulses. We develop a conceptual test system for implementing short-pulse quantum key distribution, building on the design of a recently achieved Bell's theorem test in a cryogenic microwave setup.

3.
Nat Commun ; 13(1): 2495, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35523783

ABSTRACT

From the perspective of many-body physics, the transmon qubit architectures currently developed for quantum computing are systems of coupled nonlinear quantum resonators. A certain amount of intentional frequency detuning ('disorder') is crucially required to protect individual qubit states against the destabilizing effects of nonlinear resonator coupling. Here we investigate the stability of this variant of a many-body localized phase for system parameters relevant to current quantum processors developed by the IBM, Delft, and Google consortia, considering the cases of natural or engineered disorder. Applying three independent diagnostics of localization theory - a Kullback-Leibler analysis of spectral statistics, statistics of many-body wave functions (inverse participation ratios), and a Walsh transform of the many-body spectrum - we find that some of these computing platforms are dangerously close to a phase of uncontrollable chaotic fluctuations.

4.
Phys Rev Lett ; 115(12): 120402, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26430973

ABSTRACT

We investigate the self-correcting properties of a network of Majorana wires, in the form of a trijunction, in contact with a parity-preserving thermal environment. As opposed to the case where Majorana bound states are immobile, braiding Majorana bound states within a trijunction introduces dangerous error processes that we identify. Such errors prevent the lifetime of the memory from increasing with the size of the system. We confirm our predictions with Monte Carlo simulations. Our findings put a restriction on the degree of self-correction of this specific quantum computing architecture.

5.
Phys Rev Lett ; 113(15): 150501, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25375696

ABSTRACT

Single-qubit operations on singlet-triplet qubits in GaAs double quantum dots have not yet reached the fidelities required for fault-tolerant quantum information processing. Considering experimentally important constraints and using measured noise spectra, we numerically minimize the effect of decoherence (including high-frequency 1/f-like noise) and show, theoretically, that quantum gates with fidelities higher than 99.9% are achievable. We also present a self-consistent tuning protocol which should allow the elimination of individual systematic gate errors directly in an experiment.

6.
Phys Rev Lett ; 108(26): 260504, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-23004947

ABSTRACT

We consider a system consisting of a 2D network of links between Majorana fermions on superconducting islands. We show that the fermionic Hamiltonian modeling this system is topologically ordered in a region of parameter space: we show that Kitaev's toric code emerges in fourth-order perturbation theory. By using a Jordan-Wigner transformation we can map the model onto a family of signed 2D Ising models in a transverse field where the signs, ferromagnetic or antiferromagnetic, are determined by additional gauge bits. Our mapping allows an understanding of the nonperturbative regime and the phase transition to a nontopological phase. We discuss the physics behind a possible implementation of this model and argue how it can be used for topological quantum computation by adiabatic changes in the Hamiltonian.

7.
Science ; 334(6052): 50-1, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21980102
8.
Phys Rev Lett ; 104(23): 230502, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20867219

ABSTRACT

We propose and analyze a technique for producing a beam-splitting quantum gate between two modes of a ring-resonator superconducting cavity. The cavity has two integrated superconducting quantum interference devices (SQUIDs) that are modulated by applying an external magnetic field. The gate is accomplished by applying a radio frequency pulse to one of the SQUIDs at the difference of the two mode frequencies. Departures from perfect beam splitting only arise from corrections to the rotating wave approximation; an exact calculation gives a fidelity of >0.9992. Our construction completes the toolkit for linear-optics quantum computing in circuit quantum electrodynamics.

9.
Phys Rev Lett ; 105(10): 100502, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-20867498

ABSTRACT

We report quantum coherence measurements of a superconducting qubit whose design is a hybrid of several existing types. Excellent coherence times are found: T2∼T1∼1.5 µs. The topology of the qubit is that of a traditional three-junction flux qubit, but it has a large shunting capacitance, and the ratio of the junction critical currents is chosen so that the qubit potential has a single-well form. The qubit has a sizable nonlinearity, but its sign is reversed compared with most other popular qubit designs. The qubit is read out dispersively using a high-Q resonator in a λ/2 configuration.

10.
Phys Rev Lett ; 101(7): 070503, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18764519

ABSTRACT

We show how to map a given n-qubit target Hamiltonian with bounded-strength k-body interactions onto a simulator Hamiltonian with two-body interactions, such that the ground-state energy of the target and the simulator Hamiltonians are the same up to an extensive error O(epsilon n) for arbitrary small epsilon. The strength of the interactions in the simulator Hamiltonian depends on epsilon and k but does not depend on n. We accomplish this reduction using a new way of deriving an effective low-energy Hamiltonian which relies on the Schrieffer-Wolff transformation of many-body physics.

11.
Phys Rev Lett ; 98(26): 267003, 2007 Jun 29.
Article in English | MEDLINE | ID: mdl-17678120

ABSTRACT

We propose a model for 1/f flux noise in superconducting devices (f is frequency). The noise is generated by the magnetic moments of electrons in defect states which they occupy for a wide distribution of times before escaping. A trapped electron occupies one of the two Kramers-degenerate ground states, between which the transition rate is negligible at low temperature. As a result, the magnetic moment orientation is locked. Simulations of the noise produced by randomly oriented defects with a density of 5x10(17) m(-2) yield 1/f noise magnitudes in good agreement with experiments.

12.
Phys Rev Lett ; 98(2): 020501, 2007 Jan 12.
Article in English | MEDLINE | ID: mdl-17358588

ABSTRACT

How important is fast measurement for fault-tolerant quantum computation? Using a combination of existing and new ideas, we argue that measurement times as long as even 1000 gate times or more have a very minimal effect on the quantum accuracy threshold. This shows that slow measurement, which appears to be unavoidable in many implementations of quantum computing, poses no essential obstacle to scalability.

13.
Science ; 309(5744): 2173-4, 2005 Sep 30.
Article in English | MEDLINE | ID: mdl-16195448
14.
Phys Rev Lett ; 92(6): 067902, 2004 Feb 13.
Article in English | MEDLINE | ID: mdl-14995276

ABSTRACT

We show that there exist bipartite quantum states which contain a large locked classical correlation that is unlocked by a disproportionately small amount of classical communication. In particular, there are (2n+1)-qubit states for which a one-bit message doubles the optimal classical mutual information between measurement results on the subsystems, from n/2 bits to n bits. This phenomenon is impossible classically. However, states exhibiting this behavior need not be entangled. We study the range of states exhibiting this phenomenon and bound its magnitude.

SELECTION OF CITATIONS
SEARCH DETAIL
...