Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phytopathology ; 94(7): 780-8, 2004 Jul.
Article in English | MEDLINE | ID: mdl-18943912

ABSTRACT

ABSTRACT Horticultural potting media have been amended with compost to enhance biological suppression and with Al(2)(SO(4))(3) to enhance abiotic suppression of plant pathogens, but these factors have not been simultaneously incorporated into the same medium. In this study, the efficacy of aluminum (Al)-amended potting medium containing 20% composted swine waste (CSW) was assessed for control of Phytophthora parasitica (syn. P. nicotianae), a soilborne pathogen causing damping-off of many horticultural bedding plants. Steamed and unsteamed media were amended with no Al or Al at 0.0079 g of Al g(-1) of medium with an Al(2)(SO(4))(3) solution at either pH 4 or pH 6. Infested leaf disks were buried for 2-day durations beginning 0, 6, 13, and 21 days after Al amendment. The number of sporangia produced on infested leaf disks was assessed. A similar experiment was conducted to determine the effect of steaming and Al amendments on pathogen populations. Medium treated with the pH 4 solution consistently reduced sporangia production between 38 and 65% on day 0, but no Al effect was noted at subsequent time points. The pH 6 amendment did not consistently affect sporangia production. Exchangeable Al levels decreased over time, and abiotic suppression was only observed at >2 muM Al g(-1) of medium. Pathogen populations were occasionally affected by steaming and Al. Sporangia production in unsteamed medium was reduced by 50% on leaf disks buried on days 6, 13, and 21, but not on day 0. Al amendment of a 20% CSW potting medium enhanced suppression of P. parasitica and abiotic suppression occurred before biological suppression developed.

2.
Phytopathology ; 93(9): 1115-23, 2003 Sep.
Article in English | MEDLINE | ID: mdl-18944095

ABSTRACT

ABSTRACT Peat moss-based potting mix was amended with either of two composted swine wastes, CSW1 and CSW2, at rates from 4 to 20% (vol/vol) to evaluate suppression of pre-emergence damping-off of impatiens (Impatiens balsamina) caused by Rhizoctonia solani (anastomosis group-4). A cucumber bioassay was used prior to each impatiens experiment to monitor maturity of compost as the compost aged in a curing pile by evaluating disease suppression toward both Pythium ultimum and R. solani. At 16, 24, 32, and 37 weeks after composting, plug trays filled with compost-amended potting mix were seeded with impatiens and infested with R. solani to determine suppression of damping-off. Pre-emergence damping-off was lower for impatiens grown in potting mix amended with 20% CSW1 than in CSW2-amended and nonamended mixes. To identify relationships between disease suppression and microbial parameters, samples of mixes were collected to determine microbial activity, biomass carbon and nitrogen, functional diversity, and population density. Higher rates of microbial activity were observed with increasing rates of CSW1 amendment than with CSW2 amendments. Microbial biomass carbon and nitrogen also were higher in CSW1-amended mixes than in CSW2-amended potting mixes 1 day prior to seeding and 5 weeks after seeding. Principal component analysis of Biolog-GN2 profiles showed different functional diversities between CSW1- and CSW2-amended mixes. Furthermore, mixes amended with CSW1 had higher colony forming units of fungi, endospore-forming bacteria, and oligotrophic bacteria. Our results suggest that enhanced microbial activity, functional and population diversity of stable compost-amended mix were associated with suppressiveness to Rhizoctonia damping-off in impatiens.

SELECTION OF CITATIONS
SEARCH DETAIL