Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Pharmacol ; 76(6): 631-645, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38507715

ABSTRACT

PURPOSE: Although resveratrol (RES) is an efficacious molecule, its therapeutic activity is impeded by significant limitations, such as rapid oral absorption, poor oral bioavailability, and low water solubility. Therefore, the preparation of RES in different pharmaceutical carriers represents an important tool to enhance its therapeutic applications. This study aims to potentiate the anti-cancer activity of RES by formulating it into a novel nanocarrier called Smart Lipid. METHODS: RES-loaded Smart Lipids were prepared by high-shear hot homogenization method utilizing a 21 × 32 factorial design with three factors at different levels: the total lipid concentration, the concentration of surfactant, and the type of surfactant. The responses were evaluated based on entrapment efficiency percentages and particle size. RESULTS: Our novel optimized RES-loaded Smart Lipid formula showed small particle size (288.63 ± 5.55 nm), good zeta potential (-16.44 ± 0.99 mV), and an entrapment efficiency of 86.346 ± 3.61% with spherical, clearly distinct, and no signs of fusion by transmission electron microscopy. Further characterization was done using differential scanning calorimetry, which showed no interaction between the drug and other components as the optimum lyophilized formula showed a peak at 54.75°C, which represents the lipid mixture, with an undetectable characteristic peak of the drug, which indicates entrapment of the drug, and the structure of the compounds was confirmed by Fourier transform-infrared spectroscopy, in which the majority of the drug's characteristic peaks disappeared when loaded into Smart Lipid, which may indicate Smart Lipid's ability to reduce the stretching and bending between bonds in RES. In addition, the optimized formula showed a sustained release pattern compared to RES suspension. Finally, the cytotoxic activity of the optimized RES-loaded Smart Lipid on different cell lines (human breast adenocarcinoma (MCF7), human hepatocellular carcinoma (HepG2), and human colon cancer cells (HT29)) was assessed through MTT assay (7-fold reduction in the IC50, from 3.7 ± 0.5 µM for free RES to 0.5 ± 0.033 µM for Smart Lipid loaded formula against MCF7, 3-fold reduction in the IC50 against HepG2 cells, from 10.01 ± 0.35 to 3.16 ± 0.21 µMm, and a more than 10-fold reduction in the IC50 from more than 100 to 10 ± 0.57 µM against HT-29 cells) and its effect on cell cycle progression and apoptosis induction were assessed using flow cytometry and annexin V kit, respectively. Our results showed that RES-loaded Smart Lipid significantly reduced cell viability, induced cell cycle arrest at G0/G1 phase, and apoptosis compared to free formula and free RES suspension. CONCLUSION: Loading RES into this novel kind of nanocarrier enhanced RES absorption, cellular accumulation, and improved its anticancer properties.


Subject(s)
Drug Carriers , Lipids , Particle Size , Resveratrol , Resveratrol/pharmacology , Resveratrol/administration & dosage , Resveratrol/chemistry , Humans , Lipids/chemistry , Drug Carriers/chemistry , Hep G2 Cells , Nanoparticles/chemistry , Drug Compounding/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Solubility , Calorimetry, Differential Scanning , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Cell Line, Tumor , Chemistry, Pharmaceutical/methods , Drug Liberation , Drug Design/methods , MCF-7 Cells , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Stilbenes/pharmacology , Stilbenes/chemistry , Stilbenes/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...