Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38141020

ABSTRACT

We demonstrate an organic electrochemical transistor (OECT) biosensor for the detection of interleukin 6 (IL6), an important biomarker associated with various pathological processes, including chronic inflammation, inflammaging, cancer, and severe COVID-19 infection. The biosensor is functionalized with oligonucleotide aptamers engineered to bind specifically IL6. We developed an easy functionalization strategy based on gold nanoparticles deposited onto a poly(3,4-ethylenedioxythiophene) doped with polystyrenesulfonate (PEDOT:PSS) gate electrode for the subsequent electrodeposition of thiolated aptamers. During this functionalization step, the reduction of sulfide bonds allows for simultaneous deposition of a blocking agent. A detection range from picomolar to nanomolar concentrations for IL6 was achieved, and the selectivity of the device was assessed against Tumor Necrosis Factor (TNF), another cytokine involved in the inflammatory processes.

2.
Front Plant Sci ; 13: 916120, 2022.
Article in English | MEDLINE | ID: mdl-35937381

ABSTRACT

Plants are able to sense and respond to a myriad of external stimuli, using different signal transduction pathways, including electrical signaling. The ability to monitor plant responses is essential not only for fundamental plant science, but also to gain knowledge on how to interface plants with technology. Still, the field of plant electrophysiology remains rather unexplored when compared to its animal counterpart. Indeed, most studies continue to rely on invasive techniques or on bulky inorganic electrodes that oftentimes are not ideal for stable integration with plant tissues. On the other hand, few studies have proposed novel approaches to monitor plant signals, based on non-invasive conformable electrodes or even organic transistors. Organic electrochemical transistors (OECTs) are particularly promising for electrophysiology as they are inherently amplification devices, they operate at low voltages, can be miniaturized, and be fabricated in flexible and conformable substrates. Thus, in this study, we characterize OECTs as viable tools to measure plant electrical signals, comparing them to the performance of the current standard, Ag/AgCl electrodes. For that, we focused on two widely studied plant signals: the Venus flytrap (VFT) action potentials elicited by mechanical stimulation of its sensitive trigger hairs, and the wound response of Arabidopsis thaliana. We found that OECTs are able to record these signals without distortion and with the same resolution as Ag/AgCl electrodes and that they offer a major advantage in terms of signal noise, which allow them to be used in field conditions. This work establishes these organic bioelectronic devices as non-invasive tools to monitor plant signaling that can provide insight into plant processes in their natural environment.

3.
Adv Healthc Mater ; 10(20): e2100955, 2021 10.
Article in English | MEDLINE | ID: mdl-34423579

ABSTRACT

An overview of cytokine biosensing is provided, with a focus on the opportunities provided by organic electronic platforms for monitoring these inflammation biomarkers which manifest at ultralow concentration levels in physiopathological conditions. Specifically, two of the field's state-of-the-art technologies-organic electrochemical transistors (OECTs) and electrolyte gated organic field effect transistors (EGOFETs)-and their use in sensing cytokines and other proteins associated with inflammation are a particular focus. The overview will include an introduction to current clinical and "gold standard" quantification techniques and their limitations in terms of cost, time, and required infrastructure. A critical review of recent progress with OECT- and EGOFET-based protein biosensors is presented, alongside a discussion onthe future of these technologies in the years and decades ahead. This is especially timely as the world grapples with limited healthcare diagnostics during the Coronavirus disease (COVID-19)pandemic where one of the worst-case scenarios for patients is the "cytokine storm." Clearly, low-cost point-of-care technologies provided by OECTs and EGOFETs can ease the global burden on healthcare systems and support professionals by providing unprecedented wealth of data that can help to monitor disease progression in real time.


Subject(s)
Biosensing Techniques , COVID-19 , Biomarkers , Electrolytes , Humans , Inflammation/diagnosis , SARS-CoV-2 , Transistors, Electronic
4.
iScience ; 24(1): 101966, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33474535

ABSTRACT

Bioelectronic devices that convert biochemical signals to electronic readout enable biosensing with high spatiotemporal resolution. These technologies have been primarily applied in biomedicine while in plants sensing is mainly based on invasive methods that require tissue sampling, hindering in-vivo detection and having poor spatiotemporal resolution. Here, we developed enzymatic biosensors based on organic electrochemical transistors (OECTs) for in-vivo and real-time monitoring of sugar fluctuations in the vascular tissue of trees. The glucose and sucrose OECT-biosensors were implanted into the vascular tissue of trees and were operated through a low-cost portable unit for 48hr. Our work consists a proof-of-concept study where implantable OECT-biosensors not only allow real-time monitoring of metabolites in plants but also reveal new insights into diurnal sugar homeostasis. We anticipate that this work will contribute to establishing bioelectronic technologies as powerful minimally invasive tools in plant science, agriculture and forestry.

5.
Anal Chem ; 92(13): 9330-9337, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32483968

ABSTRACT

Electrolyte gated organic transistors can operate as powerful ultrasensitive biosensors, and efforts are currently devoted to devising strategies for reducing the contribution of hardly avoidable, nonspecific interactions to their response, to ultimately harness selectivity in the detection process. We report a novel lab-on-a-chip device integrating a multigate electrolyte gated organic field-effect transistor (EGOFET) with a 6.5 µL microfluidics set up capable to provide an assessment of both the response reproducibility, by enabling measurement in triplicate, and of the device selectivity through the presence of an internal reference electrode. As proof-of-concept, we demonstrate the efficient operation of our pentacene based EGOFET sensing platform through the quantification of tumor necrosis factor alpha with a detection limit as low as 3 pM. Sensing of inflammatory cytokines, which also include TNFα, is of the outmost importance for monitoring a large number of diseases. The multiplexable organic electronic lab-on-chip provides a statistically solid, reliable, and selective response on microliters sample volumes on the minutes time scale, thus matching the relevant key-performance indicators required in point-of-care diagnostics.


Subject(s)
Biosensing Techniques/methods , Tumor Necrosis Factor-alpha/analysis , Aptamers, Peptide/chemistry , Aptamers, Peptide/metabolism , Bacterial Infections/metabolism , Bacterial Infections/pathology , Biosensing Techniques/instrumentation , Electrodes , Gold/chemistry , Humans , Lab-On-A-Chip Devices , Limit of Detection , Transistors, Electronic , Tumor Necrosis Factor-alpha/metabolism
6.
Biointerphases ; 12(5): 05F401, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28954519

ABSTRACT

Cytokines are small proteins that play fundamental roles in inflammatory processes in the human body. In particular, interleukin (IL)-6 is a multifunctional cytokine, whose increased levels are associated with infection, cancer, and inflammation. The quantification of IL-6 is therefore of primary importance in early stages of inflammation and in chronic diseases, but standard techniques are expensive, time-consuming, and usually rely on fluorescent or radioactive labels. Organic electronic devices and, in particular, organic field-effect transistors (OFETs) have been proposed in the recent years as novel platforms for label-free protein detection, exploiting as sensing unit surface-immobilized antibodies or aptamers. Here, the authors report two electrolyte-gated OFETs biosensors for IL-6 detection, featuring monoclonal antibodies and peptide aptamers adsorbed at the gate. Both strategies yield biosensors that can work on a wide range of IL-6 concentrations and exhibit a remarkable limit of detection of 1 pM. Eventually, electrolyte gated OFETs responses have been used to extract and compare the binding thermodynamics between the sensing moiety, immobilized at the gate electrode, and IL-6.


Subject(s)
Biosensing Techniques/methods , Interleukin-6/analysis , Antibodies, Monoclonal/metabolism , Aptamers, Peptide/metabolism , Electrolytes/metabolism
7.
Hum Mol Genet ; 25(18): 3908-3924, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27466192

ABSTRACT

Aggregation of TAR-DNA-binding protein 43 (TDP-43) and of its fragments TDP-25 and TDP-35 occurs in amyotrophic lateral sclerosis (ALS). TDP-25 and TDP-35 act as seeds for TDP-43 aggregation, altering its function and exerting toxicity. Thus, inhibition of TDP-25 and TDP-35 aggregation and promotion of their degradation may protect against cellular damage. Upregulation of HSPB8 is one possible approach for this purpose, since this chaperone promotes the clearance of an ALS associated fragments of TDP-43 and is upregulated in the surviving motor neurones of transgenic ALS mice and human patients. We report that overexpression of HSPB8 in immortalized motor neurones decreased the accumulation of TDP-25 and TDP-35 and that protection against mislocalized/truncated TDP-43 was observed for HSPB8 in Drosophila melanogaster Overexpression of HSP67Bc, the functional ortholog of human HSPB8, suppressed the eye degeneration caused by the cytoplasmic accumulation of a TDP-43 variant with a mutation in the nuclear localization signal (TDP-43-NLS). TDP-43-NLS accumulation in retinal cells was counteracted by HSP67Bc overexpression. According with this finding, downregulation of HSP67Bc increased eye degeneration, an effect that is consistent with the accumulation of high molecular weight TDP-43 species and ubiquitinated proteins. Moreover, we report a novel Drosophila model expressing TDP-35, and show that while TDP-43 and TDP-25 expression in the fly eyes causes a mild degeneration, TDP-35 expression leads to severe neurodegeneration as revealed by pupae lethality; the latter effect could be rescued by HSP67Bc overexpression. Collectively, our data demonstrate that HSPB8 upregulation mitigates TDP-43 fragment mediated toxicity, in mammalian neuronal cells and flies.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Heat-Shock Proteins/genetics , Peptide Fragments/genetics , Protein Serine-Threonine Kinases/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , DNA-Binding Proteins/metabolism , Disease Models, Animal , Drosophila Proteins/biosynthesis , Drosophila melanogaster/genetics , Eye/growth & development , Eye/physiopathology , Gene Expression Regulation , Heat-Shock Proteins/biosynthesis , Humans , Mice , Mice, Transgenic , Molecular Chaperones , Motor Neurons/metabolism , Motor Neurons/pathology , Peptide Fragments/metabolism , Protein Aggregation, Pathological/genetics , Protein Serine-Threonine Kinases/biosynthesis , Pupa/genetics , Pupa/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...