Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Clin Invest ; 130(6): 3151-3157, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32155135

ABSTRACT

Kallikrein-related peptidase 6 (KLK6) is a secreted serine protease hypothesized to promote inflammation via cleavage of protease-activated receptor 1 (PAR1) and PAR2. KLK6 levels are elevated in multiple inflammatory and autoimmune conditions, but no definitive role in pathogenesis has been established. Here, we show that skin-targeted overexpression of KLK6 causes generalized, severe psoriasiform dermatitis with spontaneous development of debilitating psoriatic arthritis-like joint disease. The psoriatic skin and joint phenotypes are reversed by normalization of skin KLK6 levels and attenuated following genetic elimination of PAR1 but not PAR2. Conservation of this regulatory pathway was confirmed in human psoriasis using vorapaxar, an FDA-approved PAR1 antagonist, on explanted lesional skin from patients with psoriasis. Beyond defining a critical role for KLK6/PAR1 signaling in promoting psoriasis, our results demonstrate that KLK6/PAR1-mediated inflammation in the skin alone is sufficient to drive inflammatory joint disease. Further, we identify PAR1 as a promising cytokine-independent target in therapy of psoriasis and psoriatic arthritis.


Subject(s)
Arthritis, Psoriatic/metabolism , Dermatitis/metabolism , Kallikreins/metabolism , Receptor, PAR-1/metabolism , Signal Transduction , Skin/metabolism , Animals , Arthritis, Psoriatic/genetics , Arthritis, Psoriatic/pathology , Dermatitis/genetics , Dermatitis/pathology , Female , Humans , Kallikreins/genetics , Male , Mice , Mice, Transgenic , Receptor, PAR-1/genetics , Skin/pathology
2.
J Invest Dermatol ; 138(2): 310-315, 2018 02.
Article in English | MEDLINE | ID: mdl-28951241

ABSTRACT

Psoriasis patients experience chronic systemic skin inflammation and develop cardiovascular comorbidities that shorten their lifespan. Whether cardiovascular disease is improved by treatment with current biologics that target disease-specific pathways is unclear. KC-Tie2 mice develop psoriasiform skin inflammation with increases in IL-23 and IL-17A and proinflammatory monocytosis and neutrophilia that precedes development of carotid artery thrombus formation. To examine whether targeted blockade of IL-23 or IL-17A in KC-Tie2 psoriasis mice improves cardiovascular outcomes, mice were treated systemically for 6 weeks with antibodies targeting IL-17A, IL-17RA, IL-12/23p40, or IL-23p19. Skin inflammation; thrombosis clotting times; and percentage of splenic monocytes, neutrophils, and CD4 T cells were examined. Skin inflammation significantly improved in KC-Tie2 mice treated with each of the antibodies targeting IL-23, IL-17A, or IL-17RA, consistent with clinical efficacy observed in psoriasis patients. The time to occlusive thrombus formation lengthened in these mice and correlated with attenuated acanthosis. This decrease in skin inflammation paralleled decreases in splenic neutrophils (CD11b+Ly6G+) but not monocytes (CD11b+Ly6Chigh) or T cells (CD4+). Our data show that targeted inhibition of IL-23 or IL-17A improves psoriasis-like skin disease and also improves cardiovascular disease in mice.


Subject(s)
Biological Products/therapeutic use , Interleukin-17/antagonists & inhibitors , Interleukin-23/antagonists & inhibitors , Psoriasis/drug therapy , Thrombosis/prevention & control , Animals , Biological Products/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Carotid Arteries , Disease Models, Animal , Female , Humans , Interleukin-17/immunology , Interleukin-17/metabolism , Interleukin-23/immunology , Interleukin-23/metabolism , Male , Mice , Mice, Transgenic , Molecular Targeted Therapy/methods , Monocytes/drug effects , Monocytes/immunology , Neutrophils/drug effects , Neutrophils/immunology , Psoriasis/complications , Psoriasis/immunology , Skin/drug effects , Skin/immunology , Skin/metabolism , Spleen/cytology , Spleen/drug effects , Spleen/immunology , Thrombosis/immunology , Treatment Outcome
3.
Genome Med ; 9(1): 24, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28279190

ABSTRACT

BACKGROUND: Imiquimod (IMQ) produces a cutaneous phenotype in mice frequently studied as an acute model of human psoriasis. Whether this phenotype depends on strain or sex has never been systematically investigated on a large scale. Such effects, however, could lead to conflicts among studies, while further impacting study outcomes and efforts to translate research findings. METHODS: RNA-seq was used to evaluate the psoriasiform phenotype elicited by 6 days of Aldara (5% IMQ) treatment in both sexes of seven mouse strains (C57BL/6 J (B6), BALB/cJ, CD1, DBA/1 J, FVB/NJ, 129X1/SvJ, and MOLF/EiJ). RESULTS: In most strains, IMQ altered gene expression in a manner consistent with human psoriasis, partly due to innate immune activation and decreased homeostatic gene expression. The response of MOLF males was aberrant, however, with decreased expression of differentiation-associated genes (elevated in other strains). Key aspects of the IMQ response differed between the two most commonly studied strains (BALB/c and B6). Compared with BALB/c, the B6 phenotype showed increased expression of genes associated with DNA replication, IL-17A stimulation, and activated CD8+ T cells, but decreased expression of genes associated with interferon signaling and CD4+ T cells. Although IMQ-induced expression shifts mirrored psoriasis, responses in BALB/c, 129/SvJ, DBA, and MOLF mice were more consistent with other human skin conditions (e.g., wounds or infections). IMQ responses in B6 mice were most consistent with human psoriasis and best replicated expression patterns specific to psoriasis lesions. CONCLUSIONS: These findings demonstrate strain-dependent aspects of IMQ dermatitis in mice. We have shown that IMQ does not uniquely model psoriasis but in fact triggers a core set of pathways active in diverse skin diseases. Nonetheless, our findings suggest that B6 mice provide a better background than other strains for modeling psoriasis disease mechanisms.


Subject(s)
Aminoquinolines/pharmacology , Disease Models, Animal , Gene Expression Regulation , Mice, Inbred Strains , Psoriasis/genetics , Skin/drug effects , Animals , Female , Humans , Imiquimod , Interleukin-17/genetics , Male , Mice , Psoriasis/metabolism , Sequence Analysis, RNA , Sex Factors , Skin/metabolism , Species Specificity
4.
J Invest Dermatol ; 137(3): 696-705, 2017 03.
Article in English | MEDLINE | ID: mdl-27984037

ABSTRACT

IL-6 inhibition has been unsuccessful in treating psoriasis, despite high levels of tissue and serum IL-6 in patients. In addition, de novo psoriasis onset has been reported after IL-6 blockade in patients with rheumatoid arthritis. To explore mechanisms underlying these clinical observations, we backcrossed an established psoriasiform mouse model (IL-17C+ mice) with IL-6-deficient mice (IL-17C+KO) and examined the cutaneous phenotype. IL-17C+KO mice initially exhibited decreased skin inflammation; however, this decrease was transient and reversed rapidly, concomitant with increases in skin Tnf, Il36α/ß/γ, Il24, Epgn, and S100a8/a9 to levels higher than those found in IL-17C+ mice. A comparison of IL-17C+ and IL-17C+KO mouse skin transcriptomes with that of human psoriasis skin revealed significant correlation among transcripts of skin of patients with psoriasis and IL-17C+KO mouse skin, and confirmed an exacerbation of the inflammatory signature in IL-17C+KO mice that aligns closely with human psoriasis. Transcriptional analyses of IL-17C+ and IL-17C+KO primary keratinocytes confirmed increased expression of proinflammatory molecules, suggesting that in the absence of IL-6, keratinocytes increase production of numerous additional proinflammatory cytokines. These preclinical findings may provide insight into why patients with arthritis being treated with IL-6 inhibitors develop new onset psoriasis and why IL-6 blockade for the treatment of psoriasis has not been clinically effective.


Subject(s)
Cytokines/metabolism , Interleukin-17/genetics , Interleukin-6/genetics , Psoriasis/genetics , Skin/pathology , Animals , Female , Humans , Inflammation , Keratinocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Psoriasis/metabolism , Skin/metabolism
5.
JCI Insight ; 1(20): e89384, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27942589

ABSTRACT

Psoriasis patients are at increased risk of heart attack and stroke and have elevated MRP8/14 levels that predict heart attack. The KC-Tie2 psoriasiform mouse model exhibits elevated MRP8/14 and is prothrombotic. Mrp14-/- mice, in contrast, are protected from thrombosis, but, surprisingly, KC-Tie2xMrp14-/- mice remain prothrombotic. Treating KC-Tie2xMrp14-/- mice with anti-IL-23p19 antibodies reversed the skin inflammation, improved thrombosis, and decreased IL-6. In comparison, IL-6 deletion from KC-Tie2 animals improved thrombosis despite sustained skin inflammation, suggesting that thrombosis improvements following IL-23 inhibition occur secondary to IL-6 decreases. Psoriasis patient skin has elevated IL-6 and IL-6 receptor is present in human coronary atheroma, supporting a link between skin and distant vessel disease in patient tissue. Together, these results identify a critical role for skin-derived IL-6 linking skin inflammation with thrombosis, and shows that in the absence of IL-6 the connection between skin inflammation and thrombosis comorbidities is severed.


Subject(s)
Inflammation/complications , Interleukin-6/metabolism , Psoriasis/pathology , Thrombosis/pathology , Animals , Calgranulin B/genetics , Female , Humans , Interleukin-23/antagonists & inhibitors , Interleukin-23/metabolism , Interleukin-6/deficiency , Keratinocytes , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor, TIE-2/genetics
6.
Oncotarget ; 7(24): 35535-35551, 2016 Jun 14.
Article in English | MEDLINE | ID: mdl-27224926

ABSTRACT

The Mrp8 and Mrp14 proteins (calprotectin) accumulate within tissues during aging and may contribute to chronic inflammation. To address this possibility, we evaluated female calprotectin-deficient Mrp14-KO and wild-type (WT) mice at 5 and 24 months of age. However, there was no evidence that age-related inflammation is blunted in KO mice. Inflammation markers were in fact elevated in livers from old KO mice, and microarray analysis revealed more consistent elevation of genes specifically expressed by B-cells and T-cells. Adipose-specific genes, however, were less consistently elevated in aged KO mice, suggesting an anti-steatosis effect of Mrp8/14 deficiency. Consistent with this, genes decreased by the anti-steatosis agent SRT1720 were decreased in old KO compared to old WT mice. Expression of lipid metabolism genes was altered in KO mice at 5 months of age, along with genes associated with development, biosynthesis and immunity. These early-age effects of Mrp8/14 deficiency, in the absence of any external stressor, were unexpected. Taken together, our findings demonstrate a pro-steatosis rather than pro-inflammatory role of calprotectin within the aging liver. This appears to reflect a developmental-metabolic phenotype of Mrp14-KO mice that is manifest at a young age in the absence of pro-inflammatory stimuli.


Subject(s)
Aging/metabolism , Calgranulin A/genetics , Calgranulin B/genetics , Fatty Liver/genetics , Inflammation/genetics , Adipose Tissue/metabolism , Animals , B-Lymphocytes/metabolism , Biomarkers/metabolism , Fatty Liver/pathology , Female , Gene Expression Profiling , Heterocyclic Compounds, 4 or More Rings/pharmacology , Leukocyte L1 Antigen Complex/genetics , Leukocyte L1 Antigen Complex/metabolism , Lipid Metabolism/physiology , Liver/metabolism , Liver/pathology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes/metabolism , Tissue Array Analysis
7.
J Transl Med ; 13: 382, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26675482

ABSTRACT

BACKGROUND: Psoriasis patients exhibit an increased risk of atherothrombotic events, including myocardial infarction and stroke. Clinical evidence suggests that psoriasis patients with early onset and more severe disease have the highest risk for these co-morbidities, perhaps due to the extent of body surface involvement, subsequent levels of systemic inflammation, or chronicity of disease. We sought to determine whether acute or chronic skin-specific inflammation was sufficient to promote thrombosis. METHODS: We used two experimental mouse models of skin-specific inflammation generated in either an acute (topical Aldara application onto wild-type C57Bl/6 mice for 5 days) or chronic (a genetically engineered K5-IL-17C mouse model of psoriasiform skin inflammation) manner. Arterial thrombosis was induced using carotid artery photochemical injury (Rose Bengal-green light laser) and carotid artery diameters were measured post-clot formation. We also examined measures of clot formation including prothrombin (PT) and activated partial thromboplastin time (aPTT). Skin inflammation was examined histologically and we profiled plasma-derived lipids. The number of skin-draining lymph-node (SDLN) and splenic derived CD11b(+)Ly6C(high) pro-inflammatory monocytes and CD11b(+)Ly6G(+) neutrophils was quantified using multi-color flow cytometry. RESULTS: Mice treated with topical Aldara for 5 days had similar carotid artery thrombotic occlusion times to mice treated with vehicle cream (32.2 ± 3.0 vs. 31.4 ± 2.5 min, p = 0.97); in contrast, K5-IL-17C mice had accelerated occlusion times compared to littermate controls (15.7 ± 2.1 vs. 26.5 ± 3.5 min, p < 0.01) while carotid artery diameters were similar between all mice. Acanthosis, a surrogate measure of inflammation, was increased in both Aldara-treated and K5-IL-17C mice compared to their respective controls. Monocytosis, defined as elevated SDLN and/or splenic CD11b(+)Ly6C(high) cells, was significantly increased in both Aldara-treated (SDLN: 3.8-fold, p = 0.02; spleen: 2.0-fold, p < 0.01) and K5-IL-17C (SDLN: 3.4-fold, p = 0.02; spleen: 3.5-fold, p < 0.01) animals compared to controls while neutrophilia, defined as elevated SDLN and/or splenic CD11b(+)Ly6G(+) cells, was significantly increased in only the chronic K5-IL-17C model (SDLN: 11.6-fold, p = 0.02; spleen: 11.3-fold, p < 0.01). Plasma-derived lipid levels, PT and aPTT times showed no difference between the Aldara-treated mice or the K5-IL-17C mice and their respective controls. CONCLUSIONS: Chronic, but not acute, skin-specific inflammation was associated with faster arterial thrombotic occlusion. Increased numbers of splenic and SDLN monocytes were observed in both acute and chronic skin-specific inflammation, however, increased splenic and SDLN neutrophils were observed only in the chronic skin-specific inflammation model. Understanding the cellular response to skin-specific inflammation may provide insights into the cellular participants mediating the pathophysiology of major adverse cardiovascular events associated with psoriasis.


Subject(s)
Disease Models, Animal , Inflammation/physiopathology , Psoriasis/complications , Thrombosis/complications , Animals , Chronic Disease , Inflammation/complications , Mice , Mice, Inbred C57BL
9.
J Immunol ; 190(5): 2252-62, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23359500

ABSTRACT

IL-17C is a functionally distinct member of the IL-17 family that binds IL-17 receptor E/A to promote innate defense in epithelial cells and regulate Th17 cell differentiation. We demonstrate that IL-17C (not IL-17A) is the most abundant IL-17 isoform in lesional psoriasis skin (1058 versus 8 pg/ml; p < 0.006) and localizes to keratinocytes (KCs), endothelial cells (ECs), and leukocytes. ECs stimulated with IL-17C produce increased TNF-α and KCs stimulated with IL-17C/TNF-α produce similar inflammatory gene response patterns as those elicited by IL-17A/TNF-α, including increases in IL-17C, TNF-α, IL-8, IL-1α/ß, IL-1F5, IL-1F9, IL-6, IL-19, CCL20, S100A7/A8/A9, DEFB4, lipocalin 2, and peptidase inhibitor 3 (p < 0.05), indicating a positive proinflammatory feedback loop between the epidermis and ECs. Psoriasis patients treated with etanercept rapidly decrease cutaneous IL-17C levels, suggesting IL-17C/TNF-α-mediated inflammatory signaling is critical for psoriasis pathogenesis. Mice genetically engineered to overexpress IL-17C in KCs develop well-demarcated areas of erythematous, flakey involved skin adjacent to areas of normal-appearing uninvolved skin despite increased IL-17C expression in both areas (p < 0.05). Uninvolved skin displays increased angiogenesis and elevated S100A8/A9 expression (p < 0.05) but no epidermal hyperplasia, whereas involved skin exhibits robust epidermal hyperplasia, increased angiogenesis and leukocyte infiltration, and upregulated TNF-α, IL-1α/ß, IL-17A/F, IL-23p19, vascular endothelial growth factor, IL-6, and CCL20 (p < 0.05), suggesting that IL-17C, when coupled with other proinflammatory signals, initiates the development of psoriasiform dermatitis. This skin phenotype was significantly improved following 8 wk of TNF-α inhibition. These findings identify a role for IL-17C in skin inflammation and suggest a pathogenic function for the elevated IL-17C observed in lesional psoriasis skin.


Subject(s)
Inflammation/genetics , Interleukin-17/immunology , Keratinocytes/metabolism , Psoriasis/genetics , Skin/metabolism , Tumor Necrosis Factor-alpha/immunology , Adolescent , Adult , Aged , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Etanercept , Gene Expression/drug effects , Humans , Immunoglobulin G/pharmacology , Immunoglobulin G/therapeutic use , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Interleukin-17/biosynthesis , Keratinocytes/drug effects , Keratinocytes/pathology , Mice , Mice, Transgenic , Middle Aged , Primary Cell Culture , Psoriasis/drug therapy , Psoriasis/immunology , Psoriasis/pathology , Receptors, Tumor Necrosis Factor/therapeutic use , Signal Transduction/drug effects , Skin/drug effects , Skin/pathology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/biosynthesis
10.
J Invest Dermatol ; 132(8): 2067-75, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22572815

ABSTRACT

Patients with psoriasis have systemic and vascular inflammation and are at increased risk for myocardial infarction, stroke, and cardiovascular death. However, the underlying mechanism(s) mediating the link between psoriasis and vascular disease is incompletely defined. This study sought to determine whether chronic skin-specific inflammation has the capacity to promote vascular inflammation and thrombosis. Using the KC-Tie2 doxycycline-repressible (Dox-off) murine model of psoriasiform skin disease, spontaneous aortic root inflammation was observed in 33% of KC-Tie2 compared with 0% of control mice by 12 months of age (P=0.04) and was characterized by the accumulation of macrophages, T lymphocytes, and B lymphocytes, as well as by reduced collagen content and increased elastin breaks. Importantly, aortic inflammation was preceded by increases in serum tumor necrosis factor-α, IL-17A, vascular endothelial growth factor, IL-12, monocyte chemotactic protein-1, and S100A8/A9, as well as splenic and circulating CD11b(+)Ly-6C(hi) pro-inflammatory monocytes. Doxycycline treatment of old mice with severe skin disease eliminated skin inflammation and the presence of aortic root lesion in 1-year-old KC-Tie2 animals. Given the bidirectional link between inflammation and thrombosis, arterial thrombosis was assessed in KC-Tie2 and control mice; mean time to occlusive thrombus formation was shortened by 64% (P=0.002) in KC-Tie2 animals; and doxycycline treatment returned thrombosis clotting times to that of control mice (P=0.69). These findings demonstrate that sustained skin-specific inflammation promotes aortic root inflammation and thrombosis and suggest that aggressive treatment of skin inflammation may attenuate pro-inflammatory and pro-thrombotic pathways that produce cardiovascular disease in psoriasis patients.


Subject(s)
Gene Expression Regulation , Inflammation , Psoriasis/metabolism , Skin/pathology , Thrombosis/metabolism , Animals , Aorta/pathology , Doxycycline/pharmacology , Flow Cytometry/methods , Interleukins/metabolism , Macrophages/cytology , Mice , Monocytes/cytology , Psoriasis/complications , Skin/metabolism , Skin Diseases/metabolism , Thrombosis/pathology , Tumor Necrosis Factor-alpha/metabolism
12.
Int J Clin Exp Pathol ; 5(1): 1-11, 2012.
Article in English | MEDLINE | ID: mdl-22295141

ABSTRACT

VEGF and Angiopoietin (Ang)1 are growth factors that independently improve wound healing outcomes. Using a tet-repressible mouse model coupled with streptozotocin-induced diabetes, we examined wound healing in diabetic and nondiabetic mice engineered to overexpress keratinocyte-specific (K5) VEGF, Ang1 or Ang1-VEGF combined. All nondiabetic mice healed more rapidly than their diabetic counterparts; however overexpression of VEGF, Ang1 or the combination failed to improve wound closure under diabetic conditions. Conversely, under nondiabetic conditions, combining Ang1 and VEGF resulted in rapid wound closure. Molecular analyses of diabetic and nondiabetic K5-Ang1-VEGF skin revealed no differences in VEGF expression but an 80% decrease in Ang1 under diabetic conditions, suggesting an integral role for Ang1. Nondiabetic K5-Ang1 mice healed more quickly and had significant increases in granulation tissue and a 60% decrease in re-epithelialization 7 days after wounding. Furthermore, Ang1 stimulated primary mouse keratinocytes showed significantly less migration into a wound bed in an in vitro wound healing bioassay and had decreased pMAPK, pNFκB, pAkt, and pStat3 signaling. These data suggest that combined Ang1-VEGF overexpression cannot overcome diabetes-induced delays in wound healing but is efficacious under nondiabetic conditions possibly via Ang1-mediated delays in re-epithelialization and enhancement of granulation tissue formation, thereby allowing more rapid secondary intention healing.


Subject(s)
Angiopoietin-1/biosynthesis , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/physiopathology , Vascular Endothelial Growth Factor A/biosynthesis , Wound Healing/physiology , Angiopoietin-1/genetics , Animals , Blotting, Western , Diabetes Mellitus, Experimental/genetics , Enzyme-Linked Immunosorbent Assay , Keratinocytes/cytology , Keratinocytes/metabolism , Male , Mice , Mice, Transgenic , Neovascularization, Physiologic/physiology , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Transgenes , Vascular Endothelial Growth Factor A/genetics
13.
Skin Res Technol ; 18(2): 225-31, 2012 May.
Article in English | MEDLINE | ID: mdl-22092854

ABSTRACT

BACKGROUND: Non-invasive methods are desirable for longitudinal studies examining drug efficacy and disease resolution defined as decreases in epidermal thickness in mouse models of psoriasiform skin disease. This would eliminate the need for either sacrificing animals or collecting serial skin biopsies to evaluate changes in disease progression during an individual study. The quantitation of epidermal thickness using optical coherence tomography (OCT) provides an alternative to traditional histology techniques. METHODS: Using the KC-Tie2 doxycycline-repressible psoriasiform skin disease mouse model, OCT imaging was completed on diseased back skin of adult KC-Tie2 (n = 3-4) and control (n = 3-4) mice, followed immediately by the surgical excision of the same region for histologic analyses. Animals were then treated with doxycycline to suppress transgene expression and to reverse the skin disease and additional OCT images and tissues were collected 2 and 4 weeks following. Epidermal thickness was measured using OCT and histology. RESULTS: Optical coherence tomography and histology both demonstrated that KC-Tie2 mice had significantly thicker epidermis (~4-fold; P < 0.0001) than control animals. By 2 weeks following gene repression, decreases in epidermal thickness were observed using both OCT and histology, and were sustained through 4 weeks. Correlation analyses between histology and OCT values at all time points and in all animals revealed high significance (R(2) = 0.78); with correlation being highest in KC-Tie2 mice (R(2) = 0.92) compared to control animals (R(2) = 0.16). CONCLUSION: Non-invasive OCT imaging provided similar values as those collected using standard histologic measures in thick skin of KC-Tie2 mice but became less reliable in thinner control mouse skin, possibly reflecting limitations in resolution of OCT. Future advances in resolution of OCT may improve and allow greater accuracy of epidermal thickness measurements.


Subject(s)
Dermatitis/pathology , Epidermis/pathology , Psoriasis/pathology , Tomography, Optical Coherence/methods , Animals , Anti-Bacterial Agents/pharmacology , Biopsy , Chronic Disease , Dermatitis/genetics , Disease Models, Animal , Doxycycline/pharmacology , Gene Expression/drug effects , Keratinocytes/pathology , Longitudinal Studies , Mice , Mice, Mutant Strains , Psoriasis/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptor, TIE-2 , Reproducibility of Results , Sensitivity and Specificity , Severity of Illness Index , Tomography, Optical Coherence/standards , Transgenes/genetics
14.
J Invest Dermatol ; 131(7): 1530-8, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21471984

ABSTRACT

Nervous system involvement in psoriasis pathogenesis is supported by increases in nerve fiber numbers and neuropeptides in psoriatic skin and by reports detailing spontaneous plaque remission following nerve injury. Using the KC-Tie2 psoriasiform mouse model, we investigated the mechanisms by which nerve injury leads to inflammatory skin disease remission. Cutaneous nerves innervating dorsal skin of KC-Tie2 animals were surgically axotomized and beginning 1 day after denervation, CD11c(+) cell numbers decreased by 40% followed by a 30% improvement in acanthosis at 7 days and a 30% decrease in CD4(+) T-cell numbers by 10 days. Restoration of substance P (SP) signaling in denervated KC-Tie2 skin prevented decreases in CD11c(+) and CD4(+) cells, but had no effect on acanthosis; restoration of calcitonin gene-related peptide (CGRP) signaling reversed the improvement in acanthosis and prevented denervated-mediated decreases in CD4(+) cells. Under innervated conditions, small-molecule inhibition of SP in KC-Tie2 animals resulted in similar decreases to those observed following surgical denervation for cutaneous CD11c(+) and CD4(+) cell numbers; whereas small-molecule inhibition of CGRP resulted in significant reductions in CD4(+) cell numbers and acanthosis. These data demonstrate that sensory nerve-derived peptides mediate psoriasiform dendritic cell and T-cell infiltration and acanthosis and introduce targeting nerve-immunocyte/KC interactions as potential psoriasis therapeutic treatment strategies.


Subject(s)
Keratinocytes/pathology , Neuropeptides/physiology , Psoriasis/etiology , Skin/innervation , Animals , CD11c Antigen/analysis , CD4 Lymphocyte Count , Denervation , Disease Models, Animal , Ganglia, Spinal/chemistry , Interleukin-23/analysis , Isoindoles/pharmacology , Mice , Neuropeptides/analysis , Peptide Fragments/pharmacology , Psoriasis/immunology , Psoriasis/pathology , Psoriasis/therapy , Receptor Protein-Tyrosine Kinases/physiology , Receptor, TIE-2 , Receptors, Calcitonin Gene-Related Peptide/physiology , Substance P/analogs & derivatives , Substance P/pharmacology
15.
Am J Pathol ; 174(4): 1443-58, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19342373

ABSTRACT

Psoriasis is initiated and maintained through a multifaceted interplay between keratinocytes, blood vessels, gene expression, and the immune system. One previous psoriasis model demonstrated that overexpression of the angiopoietin receptor Tie2 in endothelial cells and keratinocytes led to the development of a psoriasiform phenotype; however, the etiological significance of overexpression in each cell type alone was unclear. We have now engineered two new mouse models whereby Tie2 expression is confined to either endothelial cells or keratinocytes. Both lines of mice have significant increases in dermal vasculature but only the KC-Tie2-overexpressing mice developed a cutaneous psoriasiform phenotype. These mice spontaneously developed characteristic hallmarks of human psoriasis, including extensive acanthosis, increases in dermal CD4(+) T cells, infiltrating epidermal CD8(+) T cells, dermal dendritic cells and macrophages, and increased expression of cytokines and chemokines associated with psoriasis, including interferon-gamma, tumor necrosis factor-alpha, and interleukins 1alpha, 6, 12, 22, 23, and 17. Host-defense molecules, cathelicidin, beta-defensin, and S100A8/A9, were also up-regulated in the hyperproliferative skin. All of the phenotypic traits were completely reversed without any scarring following repression of the transgene and were significantly improved following treatment with the anti-psoriasis systemic therapeutic, cyclosporin A. Therefore, confining Tie2 overexpression solely to keratinocytes results in a mouse model that meets the clinical, histological, immunophenotypic, biochemical, and pharmacological criteria required for an animal model of human psoriasis.


Subject(s)
Disease Models, Animal , Endothelial Cells/metabolism , Keratinocytes/metabolism , Psoriasis/genetics , Receptor, TIE-2/genetics , Animals , Blotting, Western , Gene Expression , Gene Expression Profiling , Humans , Mice , Mice, Transgenic , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Oligonucleotide Array Sequence Analysis , Phenotype , Psoriasis/metabolism , Psoriasis/pathology , Receptor, TIE-2/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Skin/blood supply , Skin/metabolism , Skin/pathology , Vascular Endothelial Growth Factor A/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...