Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 924: 171696, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38485012

ABSTRACT

Microrefugia, defined as small areas maintaining populations of species outside their range margins during environmental extremes, are increasingly recognized for their role in conserving species in the face of climate change. Understanding their microclimatic dynamics becomes crucial with global warming leading to severe temperature and precipitation changes. This study investigates the phenomenon of short-term climatic decoupling within microrefugia and its implications for plant persistence in the Mediterranean region of southeastern France. We focus on microrefugia's ability to climatically disconnect from macroclimatic trends, examining temperature and Vapor Pressure Deficit (VPD) dynamics in microrefugia, adjacent control plots, and weather stations. Our study encompasses both "normal" conditions and heatwave episodes to explore the role of microrefugia as thermal and moisture insulators during extreme events. Landscape attributes such as relative elevation, solar radiation, distance to streams, and vegetation height are investigated for their contribution to short-term decoupling. Our results demonstrate that microrefugia exhibit notable decoupling from macroclimatic trends. This effect is maintained during heatwaves, underscoring microrefugia's vital role in responding to climatic extremes. Importantly, microrefugia maintain lower VPD levels than their surroundings outside and during heatwaves, potentially mitigating water stress for plants. This study advances our understanding of microclimate dynamics within microrefugia and underscores their ecological importance for plant persistence in a changing climate. As heatwaves become more frequent and severe, our findings provide insights into the role of microrefugia in buffering but also decoupling against extreme climatic events and, more generally, against climate warming. This knowledge emphasizes the need to detect and protect existing microrefugia, as they can be integrated into conservation strategies and climate change adaptation plans.

2.
Glob Chang Biol ; 29(4): 1024-1036, 2023 02.
Article in English | MEDLINE | ID: mdl-36383061

ABSTRACT

In the context of global warming, a clear understanding of microrefugia-microsites enabling the survival of species populations outside their main range limits-is crucial. Several studies have identified forcing factors that are thought to favor the existence of microrefugia. However, there is a lack of evidence to conclude whether, and to what extent, the climate encountered within existing microrefugia differs from the surrounding climate. To investigate this, we adopt a "bottom-up" approach, linking marginal disconnected populations to microclimate. We used the southernmost disconnected and abyssal populations of the circumboreal herbaceous plant Oxalis acetosella in Southern France to study whether populations in sites matching the definition of "microrefugia" occur in particularly favorable climatic conditions compared to neighboring control plots located at distances of between 50 to 100 m. Temperatures were recorded in putative microrefugia and in neighboring plots for approximately 2 years to quantify their thermal offsets. Vascular plant inventories were carried out to test whether plant communities also reflect microclimatic offsets. We found that current microclimatic dynamics are genuinely at stake in microrefugia. Microrefugia climates are systematically colder compared to those found in neighboring control plots. This pattern was more noticeable during the summer months. Abyssal populations showed stronger offsets compared to neighboring plots than the putative microrefugia occurring at higher altitudes. Plant communities demonstrate this strong spatial climatic variability, even at such a microscale approach, as species compositions systematically differed between the two plots, with species more adapted to colder and moister conditions in microrefugia compared to the surrounding area.


Subject(s)
Global Warming , Microclimate , Temperature , Seasons , Plants , Climate Change , Ecosystem
3.
Mol Ecol ; 31(15): 4095-4111, 2022 08.
Article in English | MEDLINE | ID: mdl-35691023

ABSTRACT

Intense research efforts over the last two decades have renewed our understanding of plant phylogeography and domestication in the Mediterranean basin. Here we aim to investigate the evolutionary history and the origin of domestication of the carob tree (Ceratonia siliqua), which has been cultivated for millennia for food and fodder. We used >1000 microsatellite genotypes to delimit seven carob evolutionary units (CEUs). We investigated genome-wide diversity and evolutionary patterns of the CEUs with 3557 single nucleotide polymorphisms generated by restriction-site associated DNA sequencing (RADseq). To address the complex wild vs. cultivated status of sampled trees, we classified 56 sampled populations across the Mediterranean basin as wild, seminatural or cultivated. Nuclear and cytoplasmic loci were identified from RADseq data and separated for analyses. Phylogenetic analyses of these genomic-wide data allowed us to resolve west-to-east expansions from a single long-term refugium probably located in the foothills of the High Atlas Mountains near the Atlantic coast. Our findings support multiple origins of domestication with a low impact on the genetic diversity at range-wide level. The carob was mostly domesticated from locally selected wild genotypes and scattered long-distance westward dispersals of domesticated varieties by humans, concomitant with major historical migrations by Romans, Greeks and Arabs. Ex situ efforts to preserve carob genetic resources should prioritize accessions from both western and eastern populations, with emphasis on the most differentiated CEUs situated in southwest Morocco, south Spain and eastern Mediterranean. Our study highlights the relevance of wild and seminatural habitats in the conservation of genetic resources for cultivated trees.


Subject(s)
Domestication , Fabaceae , Phylogeny , Fabaceae/genetics , Fruit , Galactans , Genetic Variation , Mannans , Mediterranean Region , Plant Gums
4.
C R Biol ; 334(4): 311-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21513901

ABSTRACT

Hybridization processes can lead to evolutionary changes, particularly in co-introduced congeneric plant species, such as Carpobrotus spp. which are recognized as invasive in Mediterranean climate regions. Morphological and karyological comparisons have therefore been made between native Carpobrotus edulis and C. acinaciformis in South Africa and their invasive counterparts in Provence (C. edulis and C. aff. acinaciformis). Morphological data exhibited the most significant differences in invasive C. aff. acinaciformis that forms a new phenotypic variant. Unexpected chromosomal restructuring has been highlighted for both taxa in Provence, with in particular a clear decrease in asymmetry, an increase in the intraspecific variability, and an interspecific convergence of karyotypes. These changes suggest a drift that has facilitated various crosses, and has been amplified through hybridization/introgression. Furthermore, several morphological and karyological transgressive characters have been found in the two invasive taxa. These results stress the important role and the rapidity of karyological changes in invasive processes.


Subject(s)
Aizoaceae/anatomy & histology , Aizoaceae/genetics , Introduced Species , Aizoaceae/classification , Biological Evolution , Chromosomes, Plant/genetics , Chromosomes, Plant/ultrastructure , Classification , Color , Flowers/anatomy & histology , France , Karyotyping , Pollination , Principal Component Analysis , South Africa
5.
C R Biol ; 330(9): 691-700, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17720586

ABSTRACT

We examine the effects of fire and/or surrounding vegetation cover on demographic stage densities and plant performance for a rare endemic geophyte, Acis nicaeensis (Alliaceae), in Mediterranean xerophytic grasslands of the 'Alpes-Maritimes' French 'département', through sampling plots in unburned and burned treatments. Fire increases density of flowering individuals and seedling emergence, as well as clump densities and number of individuals per clump, per limiting vegetation height and cover, and increasing bare soil cover. In contrast, fire has no effect on reproductive success. Nevertheless, two growing seasons after fire, all parameters of demographic stages and plant performance do not significantly differ between the two treatments. Small-scale fire is beneficial for the regeneration of this threatened geophyte at a short-time scale. In this context, a conservation planning with small and controlled fires could maintain the regeneration window for populations of rare Mediterranean geophytes.


Subject(s)
Allium/physiology , Ecosystem , Fires , Allium/growth & development , Biomass , Mediterranean Region , Reproduction , Seasons , Seeds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...