Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Data Brief ; 52: 110014, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38235173

ABSTRACT

Intracranial aneurysm (IA) rupture is a common cause of hemorrhagic stroke. The treatment of unruptured IAs is a challenging decision that requires delicate risk stratification. The rate of poor clinical outcomes after surgical intervention (aneurysm clipping) or endovascular coiling remains elevated (6.7% and 4.8%, respectively), and they do not provide an absolute guarantee to prevent IA growth and rupture. Currently, there is no pharmaceutical treatment to cure or stabilize IAs. Improving the current or developing new treatments for IA disease would require a better understanding of the cellular and molecular mechanisms occurring in the different stages of the disease. Hemodynamic forces play a critical role in IA disease. While the role of wall shear stress in IAs is well-established, the influence of cyclic circumferential stretch (CCS) still needs clarification. IAs are generally characterized by a lack of CCS. In this investigation, we sought to understand the effect of aneurysmal CCS on endothelial cell (EC) function and its potential significance in IA disease, hypothesizing that CCS can influence IA wall remodelling. RNA-seq data were generated from human umbilical vein ECs (HUVECs) exposed to physiological (6%) or aneurysmal CCS (static). We performed differential gene expression and pathway enrichment analysis. Additionally, we highlighted cell junction gene expression between static and 6% CCS to contribute to the debate about how cell junctions affect endothelium stability and integrity. Researchers in the vascular biology field may benefit from this transcriptomic profile to understand the effect of mechanical stretch on EC biology and its potential significance in vascular disease development.

2.
Vascul Pharmacol ; 150: 107178, 2023 06.
Article in English | MEDLINE | ID: mdl-37137436

ABSTRACT

Flowing blood regulates vascular development, homeostasis and disease by generating wall shear stress which has major effects on endothelial cell (EC) physiology. Low oscillatory shear stress (LOSS) induces a form of cell plasticity called endothelial-to-mesenchymal transition (EndMT). This process has divergent effects; in embryos LOSS-induced EndMT drives the development of atrioventricular valves, whereas in adult arteries it is associated with inflammation and atherosclerosis. The Notch ligand DLL4 is essential for LOSS-dependent valve development; here we investigated whether DLL4 is required for responses to LOSS in adult arteries. Analysis of cultured human coronary artery EC revealed that DLL4 regulates the transcriptome to induce markers of EndMT and inflammation under LOSS conditions. Consistently, genetic deletion of Dll4 from murine EC reduced SNAIL (EndMT marker) and VCAM-1 (inflammation marker) at a LOSS region of the murine aorta. We hypothesized that endothelial Dll4 is pro-atherogenic but this analysis was confounded because endothelial Dll4 negatively regulated plasma cholesterol levels in hyperlipidemic mice. We conclude that endothelial DLL4 is required for LOSS-induction of EndMT and inflammation regulators at atheroprone regions of arteries, and is also a regulator of plasma cholesterol.


Subject(s)
Atherosclerosis , Coronary Vessels , Endothelial Cells , Animals , Mice , Humans , Cells, Cultured , Coronary Vessels/metabolism , Coronary Vessels/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Epithelial-Mesenchymal Transition , Atherosclerosis/metabolism , Male
3.
Arterioscler Thromb Vasc Biol ; 43(4): 547-561, 2023 04.
Article in English | MEDLINE | ID: mdl-36794585

ABSTRACT

BACKGROUND: Hemodynamic wall shear stress (WSS) exerted on the endothelium by flowing blood determines the spatial distribution of atherosclerotic lesions. Disturbed flow (DF) with a low WSS magnitude and reversing direction promotes atherosclerosis by regulating endothelial cell (EC) viability and function, whereas un-DF which is unidirectional and of high WSS magnitude is atheroprotective. Here, we study the role of EVA1A (eva-1 homolog A), a lysosome and endoplasmic reticulum-associated protein linked to autophagy and apoptosis, in WSS-regulated EC dysfunction. METHODS: The effect of WSS on EVA1A expression was studied using porcine and mouse aortas and cultured human ECs exposed to flow. EVA1A was silenced in vitro in human ECs and in vivo in zebrafish using siRNA (small interfering RNA) and morpholinos, respectively. RESULTS: EVA1A was induced by proatherogenic DF at both mRNA and protein levels. EVA1A silencing resulted in decreased EC apoptosis, permeability, and expression of inflammatory markers under DF. Assessment of autophagic flux using the autolysosome inhibitor, bafilomycin coupled to the autophagy markers LC3-II (microtubule-associated protein 1 light chain 3-II) and p62, revealed that EVA1A knockdown promotes autophagy when ECs are exposed to DF, but not un-DF . Blocking autophagic flux led to increased EC apoptosis in EVA1A-knockdown cells exposed to DF, suggesting that autophagy mediates the effects of DF on EC dysfunction. Mechanistically, EVA1A expression was regulated by flow direction via TWIST1 (twist basic helix-loop-helix transcription factor 1). In vivo, knockdown of EVA1A orthologue in zebrafish resulted in reduced EC apoptosis, confirming the proapoptotic role of EVA1A in the endothelium. CONCLUSIONS: We identified EVA1A as a novel flow-sensitive gene that mediates the effects of proatherogenic DF on EC dysfunction by regulating autophagy.


Subject(s)
Atherosclerosis , Zebrafish , Animals , Humans , Mice , Apoptosis , Atherosclerosis/pathology , Autophagy , Endothelium/metabolism , Swine , Zebrafish/genetics
4.
Sci Adv ; 8(35): eabo7958, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36044575

ABSTRACT

Endothelial cell (EC) sensing of disturbed blood flow triggers atherosclerosis, a disease of arteries that causes heart attack and stroke, through poorly defined mechanisms. The Notch pathway plays a central role in blood vessel growth and homeostasis, but its potential role in sensing of disturbed flow has not been previously studied. Here, we show using porcine and murine arteries and cultured human coronary artery EC that disturbed flow activates the JAG1-NOTCH4 signaling pathway. Light-sheet imaging revealed enrichment of JAG1 and NOTCH4 in EC of atherosclerotic plaques, and EC-specific genetic deletion of Jag1 (Jag1ECKO) demonstrated that Jag1 promotes atherosclerosis at sites of disturbed flow. Mechanistically, single-cell RNA sequencing in Jag1ECKO mice demonstrated that Jag1 suppresses subsets of ECs that proliferate and migrate. We conclude that JAG1-NOTCH4 sensing of disturbed flow enhances atherosclerosis susceptibility by regulating EC heterogeneity and that therapeutic targeting of this pathway may treat atherosclerosis.


Subject(s)
Atherosclerosis , Jagged-1 Protein , Plaque, Atherosclerotic , Receptor, Notch4 , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Coronary Vessels/metabolism , Endothelial Cells/metabolism , Humans , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Mice , Plaque, Atherosclerotic/metabolism , Receptor, Notch4/genetics , Receptor, Notch4/metabolism , Signal Transduction , Swine
5.
Cardiovasc Res ; 118(6): 1583-1596, 2022 05 06.
Article in English | MEDLINE | ID: mdl-33974072

ABSTRACT

AIMS: Wall shear stress (WSS) determines intracranial aneurysm (IA) development. Polycystic kidney disease (PKD) patients have a high IA incidence and risk of rupture. Dysfunction/absence of primary cilia in PKD endothelial cells (ECs) may impair mechano-transduction of WSS and favour vascular disorders. The molecular links between primary cilia dysfunction and IAs are unknown. METHODS AND RESULTS: Wild-type and primary cilia-deficient Tg737orpk/orpk arterial ECs were submitted to physiological (30 dynes/cm2) or aneurysmal (2 dynes/cm2) WSS, and unbiased transcriptomics were performed. Tg737orpk/orpk ECs displayed a fivefold increase in the number of WSS-responsive genes compared to wild-type cells. Moreover, we observed a lower trans-endothelial resistance and a higher endothelial permeability, which correlated with disorganized intercellular junctions in Tg737orpk/orpk cells. We identified ZO-1 as a central regulator of primary cilia-dependent endothelial junction integrity. Finally, clinical and histological characteristics of IAs from non-PKD and PKD patients were analysed. IAs in PKD patients were more frequently located in the middle cerebral artery (MCA) territory than in non-PKD patients. IA domes from the MCA of PKD patients appeared thinner with less collagen and reduced endothelial ZO-1 compared with IA domes from non-PKD patients. CONCLUSION: Primary cilia dampen the endothelial response to aneurysmal low WSS. In absence of primary cilia, ZO-1 expression levels are reduced, which disorganizes intercellular junctions resulting in increased endothelial permeability. This altered endothelial function may not only contribute to the severity of IA disease observed in PKD patients, but may also serve as a potential diagnostic tool to determine the vulnerability of IAs.


Subject(s)
Cilia , Endothelial Cells , Cilia/metabolism , Cilia/pathology , Endothelial Cells/metabolism , Humans , Permeability , Stress, Mechanical , Tumor Suppressor Proteins/metabolism
6.
Front Physiol ; 12: 727338, 2021.
Article in English | MEDLINE | ID: mdl-34721060

ABSTRACT

Background: Intracranial aneurysms (IAs) result from abnormal enlargement of the arterial lumen. IAs are mostly quiescent and asymptomatic, but their rupture leads to severe brain damage or death. As the evolution of IAs is hard to predict and intricates medical decision, it is essential to improve our understanding of their pathophysiology. Wall shear stress (WSS) is proposed to influence IA growth and rupture. In this study, we investigated the effects of low and supra-high aneurysmal WSS on endothelial cells (ECs). Methods: Porcine arterial ECs were exposed for 48 h to defined levels of shear stress (2, 30, or 80 dyne/cm2) using an Ibidi flow apparatus. Immunostaining for CD31 or γ-cytoplasmic actin was performed to outline cell borders or to determine cell architecture. Geometry measurements (cell orientation, area, circularity and aspect ratio) were performed on confocal microscopy images. mRNA was extracted for RNAseq analysis. Results: ECs exposed to low or supra-high aneurysmal WSS were more circular and had a lower aspect ratio than cells exposed to physiological flow. Furthermore, they lost the alignment in the direction of flow observed under physiological conditions. The effects of low WSS on differential gene expression were stronger than those of supra-high WSS. Gene set enrichment analysis highlighted that extracellular matrix proteins, cytoskeletal proteins and more particularly the actin protein family were among the protein classes the most affected by shear stress. Interestingly, most genes showed an opposite regulation under both types of aneurysmal WSS. Immunostainings for γ-cytoplasmic actin suggested a different organization of this cytoskeletal protein between ECs exposed to physiological and both types of aneurysmal WSS. Conclusion: Under both aneurysmal low and supra-high WSS the typical arterial EC morphology molds to a more spherical shape. Whereas low WSS down-regulates the expression of cytoskeletal-related proteins and up-regulates extracellular matrix proteins, supra-high WSS induces opposite changes in gene expression of these protein classes. The differential regulation in EC gene expression observed under various WSS translate into a different organization of the ECs' architecture. This adaptation of ECs to different aneurysmal WSS conditions may affect vascular remodeling in IAs.

7.
Sci Rep ; 9(1): 4738, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30894565

ABSTRACT

Intracranial aneurysms are associated with disturbed velocity patterns, and chronic inflammation, but the relevance for these findings are currently unknown. Here, we show that (disturbed) shear stress induced by vortices is a sufficient condition to activate the endothelial NF-kB pathway, possibly through a mechanism of mechanosensor de-activation. We provide evidence for this statement through in-vitro live cell imaging of NF-kB in HUVECs exposed to different flow conditions, stochastic modelling of flow induced NF-kB activation and induction of disturbed flow in mouse carotid arteries. Finally, CFD and immunofluorescence on human intracranial aneurysms showed a correlation similar to the mouse vessels, suggesting that disturbed shear stress may lead to sustained NF-kB activation thereby offering an explanation for the close association between disturbed flow and intracranial aneurysms.


Subject(s)
Intracranial Aneurysm/etiology , NF-kappa B/metabolism , Animals , Carotid Arteries , Human Umbilical Vein Endothelial Cells , Humans , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/pathology , Mice , Molecular Imaging , Regional Blood Flow , Stress, Mechanical
8.
Front Physiol ; 10: 80, 2019.
Article in English | MEDLINE | ID: mdl-30809154

ABSTRACT

Shear stress, a blood flow-induced frictional force, is essential in the control of endothelial cell (EC) homeostasis. High laminar shear stress (HLSS), as observed in straight parts of arteries, assures a quiescent non-activated endothelium through the induction of Krüppel-like transcription factors (KLFs). Connexin40 (Cx40)-mediated gap junctional communication is known to contribute to a healthy endothelium by propagating anti-inflammatory signals between ECs, however, the molecular basis of the transcriptional regulation of Cx40 as well as its downstream effectors remain poorly understood. Here, we show that flow-induced KLF4 regulated Cx40 expression in a mouse EC line. Chromatin immunoprecipitation in ECs revealed that KLF4 bound to three predicted KLF consensus binding sites in the Cx40 promoter. HLSS-dependent induction of Cx40 expression was confirmed in primary human ECs. The downstream effects of Cx40 modulation in ECs exposed to HLSS were elucidated by an unbiased transcriptomics approach. Cell cycle progression was identified as an important downstream target of Cx40 under HLSS. In agreement, an increase in the proportion of proliferating cell nuclear antigen (PCNA)-positive ECs and a decrease in the proportion of ECs in the G0/G1 phase were observed under HLSS after Cx40 silencing. Transfection of communication-incompetent HeLa cells with Cx40 demonstrated that the regulation of proliferation by Cx40 was not limited to ECs. Using a zebrafish model, we finally showed faster intersegmental vessel growth and branching into the dorsal longitudinal anastomotic vessel in embryos knock-out for the Cx40 orthologs Cx41.8 and Cx45.6. Most significant effects were observed in embryos with a mutant Cx41.8 encoding for a channel with reduced gap junctional function. Faster intersegmental vessel growth in Cx41.8 mutant embryos was associated with increased EC proliferation as assessed by PH3 immunostaining. Our data shows a novel evolutionary-conserved role of flow-driven KLF4-dependent Cx40 expression in endothelial quiescence that may be relevant for the control of atherosclerosis and diseases involving sprouting angiogenesis.

9.
Eur J Clin Invest ; 48(9): e12992, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29962043

ABSTRACT

BACKGROUND: Intracranial aneurysm (IA) is a disease of the vascular wall resulting in abnormal enlargement of the vessel lumen. It is a common pathology with a prevalence of 2%-3% in the adult population. IAs are mostly small, quiescent and asymptomatic; yet, upon rupture, severe brain damage or even death is frequently encountered. In addition to clinical factors, hemodynamic forces, mainly wall shear stress (WSS), have been associated with the initiation of IAs and possibly with their risk of rupture. However, the mechanism by which WSS contributes to aneurysm growth and rupture is not completely understood. DESIGN: PubMed and Ovid MEDLINE databases were searched. In addition, key review articles were screened for relevant original publications. RESULTS: Current knowledge about the relation between WSS and IA has been obtained from both computational fluid dynamic studies in patients and experimental models of IA formation and growth. It is increasingly recognized that a high wall shear stress (gradient) participates to IA formation and that both low and high WSS can drive IA growth. Primary cilia (PC) play an important role as mechanosensors as patients with polycystic kidney disease, which is characterized by the absence or dysfunction of PC, have increased risk to develop IAs as well as increased risk of rupture. CONCLUSION: Wall shear stress is a key player in IA initiation and progression. It is involved in vascular wall remodelling and inflammation, processes underlying aneurysm pathophysiology.


Subject(s)
Aneurysm, Ruptured/physiopathology , Hemodynamics/physiology , Intracranial Aneurysm/physiopathology , Stress, Mechanical , Vascular Remodeling/physiology , Disease Progression , Humans
10.
J Neuropathol Exp Neurol ; 77(7): 555-566, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29688417

ABSTRACT

Pathogenesis of intracranial aneurysm is complex and the precise biomechanical processes leading to their rupture are uncertain. The goal of our study was to characterize the aneurysmal wall histologically and to correlate histological characteristics with clinical and radiological factors used to estimate the risk of rupture. A new biobank of aneurysm domes resected at the Geneva University Hospitals (Switzerland) was used. Histological analysis revealed that unruptured aneurysms have a higher smooth muscle cell (SMC) content and a lower macrophage content than ruptured domes. These differences were associated with more collagen in unruptured samples, whereas the elastin content was not affected. Collagen content and type distribution were different between thick and thin walls of unruptured aneurysms. Classification of aneurysm domes based on histological characteristics showed that unruptured samples present organized wall rich in endothelial and SMCs compared with ruptured samples. Finally, aneurysm wall composition was altered in unruptured domes of patients presenting specific clinical factors used to predict rupture such as large dome diameter, dome irregularities, and smoking. Our study shows that the wall of aneurysm suspected to be at risk for rupture undergoes structural alterations relatively well associated with clinical and radiological factors currently used to predict this risk.


Subject(s)
Aneurysm, Ruptured/pathology , Intracranial Aneurysm/pathology , Adult , Aneurysm, Ruptured/surgery , Cerebral Angiography , Collagen/metabolism , Elastin/metabolism , Endothelial Cells/pathology , Female , Humans , Immunohistochemistry , Intracranial Aneurysm/surgery , Macrophages/pathology , Magnetic Resonance Angiography , Male , Middle Aged , Muscle, Smooth, Vascular/pathology , Risk Factors , Smoking/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...