Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Res ; 61(2): 182-91, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18400323

ABSTRACT

To investigate the involvement of the noradrenergic locus coeruleus (LC) in the reflex blink circuit, c-Fos and neuronal tracer experiments were performed in the rat. LC neurons involved in reflex blink were localized by analyzing c-Fos protein expression after electrical stimulation of the supraorbital nerve. Subsequently, neuronal tracers were injected in two different nuclei which are part of the reflex blink circuit. Anterograde tracer experiments in the sensory trigeminal complex (STC) explored the trigemino-coerulear connection; retrograde tracer experiments in the latero-caudal portion of the superior colliculus (SC) established coerulear-collicular connections. The combination of retrograde tracer injections into the latero-caudal SC portion combined with electrical stimulation of the supraorbital nerve identified c-Fos positive LC neurons that project to the latero-caudal SC. Our results revealed the existence of a STC-LC-SC loop.


Subject(s)
Afferent Pathways/cytology , Blinking/physiology , Eyelids/innervation , Locus Coeruleus/cytology , Neurons/cytology , Afferent Pathways/physiology , Animals , Immunohistochemistry , Locus Coeruleus/physiology , Neurons/physiology , Rats
2.
J Comp Neurol ; 496(6): 759-72, 2006 Jun 20.
Article in English | MEDLINE | ID: mdl-16628616

ABSTRACT

This study identified neurons in the sensory trigeminal complex with connections to the medial (MVN), inferior (IVN), lateral (LVN), and superior (SVN) vestibular nuclei or the spinal cord. Trigeminovestibular and trigeminospinal neurons were localized by injection of retrograde tracers. Immunohistochemical processing revealed gamma-aminobutyric acid (GABA)- and glutamate-containing neurons in these two populations. Trigeminovestibular neurons projecting to the MVN and the IVN were in the caudal principal nucleus (5P), pars oralis (5o), interpolaris (5i), and caudalis (5c) and scattered throughout the rostral 5P. Projections were bilateral to the IVN, with an ipsilateral dominance to the MVN, except from the rostral 5P, which was contralateral. Neurons projecting to the LVN were numerous in the ventral caudal 5P and the 5o and less abundant in the rostral 5P, 5i, and 5c. Our results suggested that only 5P and 5o project to the dorsal LVN. Neurons projecting to the SVN were in the dorsal 5P, 5o, and 5i but not in 5c. Trigeminospinal neurons were mainly in the ventral 5o and 5i and in the lateral 5c, rarely or never in 5P. Among trigeminovestibular neurons, most of the somas were immunoreactive for glutamate, but some reacted for GABA. Among trigeminospinal neurons, the number of somas immunoreactive for each of the two amino acids was similar. Trigeminal terminals were observed in contact with vestibulospinal neurons in the IVN and LVN, giving evidence of a trigeminovestibulospinal pathway. Therefore, inhibitory and excitatory facial inputs may contribute through trigeminospinal or trigeminovestibulospinal pathways to the control of head/neck movements.


Subject(s)
Glutamate Decarboxylase/metabolism , Glutamic Acid/metabolism , Spinal Cord/physiology , Trigeminal Nuclei/physiology , Vestibular Nuclei/physiology , Animals , Immunohistochemistry , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , gamma-Aminobutyric Acid/metabolism
3.
Neurosci Lett ; 340(3): 225-8, 2003 Apr 17.
Article in English | MEDLINE | ID: mdl-12672547

ABSTRACT

Immunohistochemical experiments were performed using glutamic acid decarboxylase (GAD) to identify gamma-aminobutyric acid (GABA)ergic neurons in the vestibular nuclei (VN). VN neurons projecting to the sensory trigeminal complex (STC) or to the C1-C2 segments of the spinal cord were identified by injection of wheat germ agglutinin-apo-horseradish peroxidase coupled to colloidal gold (gold-HRP), a retrogradely transported tracer, in these structures. The experiments combining injection of gold-HRP in spinal cord and GAD immunohistochemistry revealed the existence in the medial, inferior and lateral VN of GAD immunoreactive neurons projecting to the spinal C1-C2 level. Experiments combining injection of gold-HRP in the STC and GAD immunohistochemistry demonstrated that, at least, 30-50% of the vestibulo-trigeminal neurons also contained GAD. Injections of two different retrograde tracers (gold-HRP and Biotinylated dextran amine) in the STC and the spinal cord demonstrated that some VN neurons project by axon collaterals to both structures. Because of the GABAergic spinal and STC vestibular projections we assume that these VN neurons with collateral projection are GABAergic. Therefore primary afferents from the face, neck or hindlimb could be modulated by inhibitory influences from GABAergic vestibular neurons.


Subject(s)
Glutamate Decarboxylase/analysis , Spinal Cord/chemistry , Trigeminal Ganglion/chemistry , Vestibular Nuclei/chemistry , Animals , Gold Colloid/analysis , Immunohistochemistry , Neural Pathways/chemistry , Neural Pathways/enzymology , Rats , Spinal Cord/enzymology , Trigeminal Ganglion/enzymology , Vestibular Nuclei/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...