Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Learn Mem ; 171: 107209, 2020 05.
Article in English | MEDLINE | ID: mdl-32147584

ABSTRACT

An increase in the intracellular Ca2+ level in neurons is one of the main steps in the memory formation cascade. The increase results from extracellular Ca2+ influx by activation of ionotropic glutamate receptors and release from intracellular stores by the stimulation of IP3 receptors (IP3Rs) via group I metabotropic glutamate receptors (mGluR1/5). Recent data indicate an additional mechanism resulting in Ca2+ influx into neurons, triggered by intracellular signals that are directly connected to the activation of group I mGluRs. This influx occurs through transient receptor potential (TRP) channels, which are permeable to Na+, K+ and, mainly, Ca2+. These channels are activated by increases in intracellular Ca2+, diacylglycerol (DAC) and inositol 1,4,5-triphosphate (IP3) level resulting from a group I mGluR activation. The aim of the present study was to investigate the participation of TRP channels, especially from TRPC and TRPV groups, in memory consolidation and reconsolidation and memory retrieval processes in a passive avoidance task in one-day old chicks. TRP channels were blocked by the injection of the unspecific channel modulators SKF 96365 (2.5 µl 30 µM/hemisphere) and 2-APB (2.5 µl 10 µM/hemisphere) directly into the intermediate medial mesopallium (IMM) region of the chick brain immediately after initial training or after a reminder. The inhibition of specific TRP channels (TRPV1, TRPV3 or TRPC3) was achieved by the application of selective antibodies. Our results demonstrate that the inhibition of TRP channels by the application of both modulators disrupted memory consolidation, resulting in permanent task amnesia. The inhibition of the TRPV1, TRPC3 and TRPV3 channels by specific antibodies resulted in similar amnesia. Moreover, the inhibition of TRP channels by SKF 96365 and 2-APB at different time points after initial training or after the reminder also resulted in amnesia, indicating the role of TRP channels in memory retrieval. The inhibition of calcium influx through these channels resulted in permanent memory disruption, which suggests that the calcium signal generated by TRP channels is crucial for memory formation and retrieval processes. For the first time, the important role of TRPV3 channels in memory formation was demonstrated.


Subject(s)
Avoidance Learning/physiology , Memory/physiology , Transient Receptor Potential Channels/metabolism , Animals , Avoidance Learning/drug effects , Boron Compounds/pharmacology , Calcium/metabolism , Chickens , Cognition/drug effects , Imidazoles/pharmacology , Male , Memory/drug effects , Neurons/drug effects , Neurons/metabolism , Transient Receptor Potential Channels/antagonists & inhibitors
2.
Chemosphere ; 223: 64-73, 2019 May.
Article in English | MEDLINE | ID: mdl-30769291

ABSTRACT

The brominated flame retardant tetrabromobisphenol A (TBBPA) is toxic to cultured brain neurons, and glutamate receptors partially mediate this effect; consequently, the depolarizing effect of TBBPA on neurons is to be expected, but it is yet to be actually demonstrated. The aim of this study was to detect TBBPA-evoked depolarization and identify the underlying mechanisms. The plasma membrane potential of rat cerebellar granule cells (CGC) in cerebellar slices or in primary cultures was measured using whole-cell current clamp recordings, or the fluorescent probe oxonol VI, respectively. The contribution of NMDA and AMPA receptors, voltage-gated sodium channels and intracellular calcium mobilization was tested using their selective antagonists or inhibitors. Direct interactions of TBBPA with NMDARs were tested by measuring the specific binding of radiolabeled NMDAR ligands to isolated rat cortical membrane fraction. TBBPA (25 µM) strongly depolarized CGC in cerebellar slices, and at ≥ 7.5 µM concentration-dependently depolarized primary CGC cultures. Depolarization of the primary CGC by 25 µM TBBPA was partly reduced when MK-801 was applied alone or in combination with either TTX or CNQX, or where bastadin 12 was applied in combination with ryanodine, whereas depolarization was completely prevented when MK-801, CNQX and TTX where combined. TBBPA had no effect on the specific binding of NMDAR radio-ligands to isolated cortical membranes. These results demonstrate the depolarizing effect of TBBPA on CGC, which is mainly mediated by ionotropic glutamate receptors, while voltage-gated sodium channels are also involved. We found no evidence for the direct activation of NMDARs by TBBPA.


Subject(s)
Cerebellum/pathology , Membrane Potentials/drug effects , Polybrominated Biphenyls/toxicity , Animals , Cells, Cultured , Flame Retardants/toxicity , Neuromuscular Depolarizing Agents , Neurons/pathology , Patch-Clamp Techniques , Rats , Receptors, Ionotropic Glutamate/metabolism , Receptors, Ionotropic Glutamate/physiology
3.
Front Mol Neurosci ; 11: 418, 2018.
Article in English | MEDLINE | ID: mdl-30505268

ABSTRACT

The disorders of the glutamatergic neurotransmission have been associated with pathogenesis of autism. In this study we evaluated the impact of the in vivo and ex vivo test methodology on measurements of levels of neurotransmitter amino acids in hippocampus of rats for valproic acid- (VPA) and thalidomide- (THAL) induced models of autism. The main goal was to compare the changes in concentrations of glutamate (Glu), glutamine (Gln) and GABA between both autistic groups and the control, measured in vivo and ex vivo in homogenates. The rat pups underwent three in vivo tests: ultrasonic vocalization (USV), magnetic resonance spectroscopy (MRS) and unilateral microdialysis of the hippocampus. Analyses of homogenates of rat hippocampus were performed using high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopy. For the statistical analysis, we performed univariate and multivariate tests. USV test, which is considered in rodents as an indicator of pathology similar to autism, showed decreased USV in VPA and THAL groups. In vivo MRS studies demonstrated increases of Glu content in male rat's hippocampus in VPA and THAL groups, while the microdialysis, which allows examination of the contents in the extracellular space, detected decreases in the basal level of Gln concentrations in VPA and THAL groups. Ex vivo HPLC studies showed that levels of Glu, Gln and GABA significantly increased in male rat's hippocampus in the VPA and THAL groups, while NMR studies showed increased levels of Gln and GABA in the VPA group. Collectively, these results are consistent with the hypothesis suggesting the role of the glutamatergic disturbances on the pathogenesis of autism. For all methods used, the values of measured changes were in the same direction. The orthogonal partial least square discriminant analysis confirmed that both animal models of autism tested here can be used to trace neurochemical changes in the brain.

4.
Neurotoxicology ; 63: 126-136, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28970181

ABSTRACT

In the present study, primary cultures of rat cerebellar granule cells (CGC) and the RT2 Profiler PCR array were used to examine the effect of acutely applied brominated flame retardant tetrabromobisphenol A (TBBPA) on the expression of 84 genes related to the main modes of programmed cell death. CGC, at the 7th day of culture, were exposed to 10 or 25µM TBBPA for 30min. Then, 3, 6, and 24h later, the viability of the cells was examined by the staining with propidium iodide (PI) or using the calcein/ethidium homodimer (CA/ET) live/dead kit, and RNA was extracted for the evaluation of gene expression by RT-PCR. At 3, 6 and 24h after the treatment, the number of viable neurons decreased, according to the PI staining method, to 75%, 58% and 41%, respectively, and with the CA/ET method to 65%, 58% and 28%, respectively. In CGC analyzed 3h after the treatment with 25µM TBBPA or 6h after 10µM TBBPA, the only change in the gene expression was a reduction in the expression of Tnf, which is associated with autophagy and may activate some pro-apoptotic proteins. Six hours after 25µM TBBPA, only 2 genes were over-expressed, a pro-apoptotic Tnfrsf10b and Irgm, which is related to autophagy, and the genes that were suppressed included the anti-apoptotic gene Xiap, the necrosis-related Commd4, pro-apoptotic Abl1, 5 genes involved in autophagy (App, Atg3, Mapk8, Pten, and Snca) and 2 genes that participate in two metabolic pathways: Atp6v1g2 (pro-apoptotic and necrosis) and Tnf (pro-apoptotic, autophagy). Autophagy-related Snca and Tnf remained under-expressed 24h after treatment with 25µM TBBPA, which was accompanied by the over-expression of the pro-apoptotic Casp6, the anti-apoptotic Birc3, 2 genes related to autophagy (Htt and Irgm) and 2 genes (Fas and Tp53) that are involved in both apoptosis (pro-apoptotic) and autophagy. These results show a complex pattern of TBBPA-evoked changes in the expression of the genes involved in the programmed neuronal death, indicating no induction of programmed necrosis, an early suppression of the autophagy and anti-apoptotic genes, followed by a delayed activation of genes associated with apoptosis.


Subject(s)
Apoptosis/drug effects , Cerebellum/cytology , Gene Expression/drug effects , Neurons/drug effects , Polybrominated Biphenyls/pharmacology , Animals , Animals, Newborn , Autophagy , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Neurons/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger/metabolism , Rats , Reactive Oxygen Species/metabolism , Time Factors , Tumor Necrosis Factors/genetics , Tumor Necrosis Factors/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
5.
Neurochem Res ; 42(3): 777-787, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27718046

ABSTRACT

Using primary cultures of rat cerebellar granule cells (CGC) we examined the role of calcium transients induced by tetrabromobisphenol A (TBBPA) in triggering oxidative stress and cytotoxicity. CGC were exposed for 30 min to 10 or 25 µM TBBPA. Changes in intracellular calcium concentration ([Ca2+]i), in the production of reactive oxygen species (ROS), and in the potential of mitochondria (∆Ψm) were measured fluorometrically during the exposure. The intracellular glutathione (GSH) and catalase activity were determined after the incubation; cell viability was evaluated 24 h later. TBBPA concentration-dependently increased [Ca2+]i and ROS production, and reduced GSH content, catalase activity, ∆Ψm and neuronal viability. The combination of NMDA and ryanodine receptor antagonists, MK-801 and bastadin 12 with ryanodine, respectively, prevented Ca2+ transients and partially reduced cytotoxicity induced by TBBPA at both concentrations. The antagonists also completely inhibited oxidative stress and depolarization of mitochondria evoked by 10 µM TBBPA, whereas these effects were only partially reduced in the 25 µM TBBPA treatment. Free radical scavengers prevented TBBPA-induced development of oxidative stress and improved CGC viability without having any effect on the rises in Ca2+ and drop in ∆Ψm. The co-administration of scavengers with NMDA and ryanodine receptor antagonists provided almost complete neuroprotection. These results indicate that Ca2+ imbalance and oxidative stress both mediate acute toxicity of TBBPA in CGC. At 10 µM TBBPA Ca2+ imbalance is a primary event, inducing oxidative stress, depolarization of mitochondria and cytotoxicity, whilst at a concentration of 25 µM TBBPA an additional Ca2+-independent portion of oxidative stress and cytotoxicity emerges.


Subject(s)
Calcium/metabolism , Cerebellum/cytology , Cytotoxins/toxicity , Environmental Pollutants/toxicity , Flame Retardants/toxicity , Neurons/drug effects , Oxidative Stress , Polybrominated Biphenyls/toxicity , Animals , Calcium Channel Blockers/pharmacology , Cells, Cultured , Cyclosporine/pharmacology , Free Radical Scavengers/pharmacology , Membrane Potential, Mitochondrial/drug effects , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Neurons/cytology , Neurons/metabolism , Primary Cell Culture , Rats, Wistar , Reactive Oxygen Species/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...