Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 117(41): 25378-25385, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32958634

ABSTRACT

Our study reveals a hitherto overlooked ecological threat of climate change. Studies of warming events in the ocean have typically focused on the events' maximum temperature and duration as the cause of devastating disturbances in coral reefs, kelp forests, and rocky shores. In this study, however, we found that the rate of onset (Ronset), rather than the peak, was the likely trigger of mass mortality of coral reef fishes in the Red Sea. Following a steep rise in water temperature (4.2 °C in 2.5 d), thermally stressed fish belonging to dozens of species became fatally infected by Streptococcus iniae Piscivores and benthivores were disproportionately impacted whereas zooplanktivores were spared. Mortality rates peaked 2 wk later, coinciding with a second warming event with extreme Ronset The epizootic lasted ∼2 mo, extending beyond the warming events through the consumption of pathogen-laden carcasses by uninfected fish. The warming was widespread, with an evident decline in wind speed, barometric pressure, and latent heat flux. A reassessment of past reports suggests that steep Ronset was also the probable trigger of mass mortalities of wild fish elsewhere. If the ongoing increase in the frequency and intensity of marine heat waves is associated with a corresponding increase in the frequency of extreme Ronset, calamities inflicted on coral reefs by the warming oceans may extend far beyond coral bleaching.


Subject(s)
Climate Change , Coral Reefs , Fish Diseases/mortality , Fishes , Streptococcal Infections/veterinary , Animals , Anthozoa , Disease Outbreaks/veterinary , Fish Diseases/microbiology , Heat-Shock Response , Indian Ocean , Streptococcal Infections/microbiology , Streptococcal Infections/mortality , Streptococcus iniae/isolation & purification , Time Factors
2.
Viruses ; 12(4)2020 04 10.
Article in English | MEDLINE | ID: mdl-32290177

ABSTRACT

Viruses are among the most abundant and diverse biological components in the marine environment. In finfish, viruses are key drivers of host diversity and population dynamics, and therefore, their effect on the marine environment is far-reaching. Viral encephalopathy and retinopathy (VER) is a disease caused by the marine nervous necrosis virus (NNV), which is recognized as one of the main infectious threats for marine aquaculture worldwide. For over 140 years, the Suez Canal has acted as a conduit for the invasion of Red Sea marine species into the Mediterranean Sea. In 2016-2017, we evaluated the prevalence of NNV in two indigenous Mediterranean species, the round sardinella (Sardinella aurita) and the white steenbras (Lithognathus mormyrus) versus two Lessepsian species, the Randall's threadfin bream (Nemipterus randalli) and the Lessepsian lizardfish (Saurida lessepsianus). A molecular method was used to detect NNV in all four fish species tested. In N. randalli, a relatively newly established invasive species in the Mediterranean Sea, the prevalence was significantly higher than in both indigenous species. In S. lessepsianus, prevalence varied considerably between years. While the factors that influence the effective establishment of invasive species are poorly understood, we suggest that the susceptibility of a given invasive fish species to locally acquired viral pathogens such as NVV may be important, in terms of both its successful establishment in its newly adopted environment and its role as a reservoir 'host' in the new area.


Subject(s)
Fish Diseases/virology , Fishes/virology , Nodaviridae/classification , Nodaviridae/physiology , Animals , Mediterranean Sea , Phylogeny , RNA, Viral
3.
Parasitol Res ; 118(1): 159-167, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30499010

ABSTRACT

Gray mullet (Mugilidae) occur in all seas and are farmed widely around the world, and thus, the risk of their parasites spreading through transport of aquaculture seed is a serious concern. Among others, gray mullets typically host a diversity of myxosporeans, a group in which spore morphometrics of genera has been consistently shown to be inadequate for determination of species. In this study, we investigated Myxobolus Bütschli 1882 (Myxosporea) species found in two fingerling stocks of Mugil cephalus caught in the wild off the coasts of the eastern (Israel) and western (Spain) Mediterranean. Although we observed similar morphological features, significant dissimilarities in spore size and differences in Myxobolus species SSU rDNA sequences were noted. Genetic analyses demonstrated that multiple Myxobolus species, some with SSU rDNA sequences new to GenBank, infected the stock from Spain. In addition, Myxobolus DNA was found associated with several types of host tissue (gill, tail, and internal organs), and sequence analyses indicated that multiple species of Myxobolus were also present, sometimes in different tissues from the same fish. The results suggest that the gray mullets supported a collection of several different Myxobolus species with similar morphology.


Subject(s)
Fish Diseases/parasitology , Myxobolus/isolation & purification , Parasitic Diseases, Animal/parasitology , Animals , DNA, Ribosomal/genetics , Gills/parasitology , Israel , Mediterranean Sea , Myxobolus/classification , Myxobolus/genetics , Phylogeny , Smegmamorpha/parasitology , Spain
4.
BMC Evol Biol ; 18(1): 138, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30208843

ABSTRACT

BACKGROUND: Myxozoa represents a diverse group of microscopic endoparasites whose life cycle involves two hosts: a vertebrate (usually a fish) and an invertebrate (usually an annelid worm). Despite lacking nearly all distinguishing animal characteristics, given that each life cycle stage consists of no more than a few cells, molecular phylogenetic studies have revealed that myxozoans belong to the phylum Cnidaria, which includes corals, sea anemones, and jellyfish. Myxozoa, however, do possess a polar capsule; an organelle that is homologous to the stinging structure unique to Cnidaria: the nematocyst. Previous studies have identified in Myxozoa a number of protein-coding genes that are specific to nematocytes (the cells producing nematocysts) and thus restricted to Cnidaria. Determining which other genes are also homologous with the myxozoan polar capsule genes could provide insight into both the conservation and changes that occurred during nematocyst evolution in the transition to endoparasitism. RESULTS: Previous studies have examined the phylogeny of two cnidarian-restricted gene families: minicollagens and nematogalectins. Here we identify and characterize seven additional cnidarian-restricted genes in myxozoan genomes using a phylogenetic approach. Four of the seven had never previously been identified as cnidarian-specific and none have been studied in a phylogenetic context. A majority of the proteins appear to be involved in the structure of the nematocyst capsule and tubule. No venom proteins were identified among the cnidarian-restricted genes shared by myxozoans. CONCLUSIONS: Given the highly divergent forms that comprise Cnidaria, obtaining insight into the processes underlying their ancient diversification remains challenging. In their evolutionary transition to microscopic endoparasites, myxozoans lost nearly all traces of their cnidarian ancestry, with the one prominent exception being their nematocysts (or polar capsules). Thus nematocysts, and the genes that code for their structure, serve as rich sources of information to support the cnidarian origin of Myxozoa.


Subject(s)
Genome , Myxozoa/genetics , Nematocyst/parasitology , Animals , Cnidaria/genetics , Evolution, Molecular , Phylogeny , Proteins/genetics , Species Specificity , Surveys and Questionnaires
5.
Mol Biol Evol ; 34(7): 1551-1556, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28333349

ABSTRACT

Myxozoans are a large group of poorly characterized cnidarian parasites. To gain further insight into their evolution, we sequenced the mitochondrial (mt) genome of Enteromyxum leei and reevaluate the mt genome structure of Kudoa iwatai. Although the typical animal mt genome is a compact, 13-25 kb, circular chromosome, the mt genome of E. leei was found to be fragmented into eight circular chromosomes of ∼23 kb, making it the largest described animal mt genome. Each chromosome was found to harbor a large noncoding region (∼15 kb), nearly identical between chromosomes. The protein coding genes show an unusually high rate of sequence evolution and possess little similarity to their cnidarian homologs. Only five protein coding genes could be identified and no tRNA genes. Surprisingly, the mt genome of K. iwatai was also found to be composed of two chromosomes. These observations confirm the remarkable plasticity of myxozoan mt genomes.


Subject(s)
Myxozoa/genetics , Animals , Base Sequence , Chromosomes/genetics , DNA, Mitochondrial/genetics , Evolution, Molecular , Genome, Mitochondrial/genetics , Mitochondria/genetics , Molecular Sequence Data , Myxozoa/metabolism , Phylogeny
6.
Article in English | MEDLINE | ID: mdl-24963773

ABSTRACT

The complete mitochondrial genome of the gilthead seabream Sparus aurata Linnaeus 1758, one of the world's most important mariculture species, was sequenced using next generation sequencing technology. The genome sequence is comprised of 16,652 bp exhibiting the canonical vertebrate mitochondria gene order. Regions of gene overlap, tRNA length, as well as start and stop codon were similar to those observed in other Sparidae. Phylogenetic reconstructions based on mitochondrial protein coding genes corroborate the view that Sparidae is paraphyletic and includes Centracanthidae.


Subject(s)
Genome, Mitochondrial , Sea Bream/genetics , Animals , Base Sequence , DNA, Mitochondrial/genetics , Open Reading Frames/genetics , Phylogeny
7.
Article in English | MEDLINE | ID: mdl-25103446

ABSTRACT

The complete mitochondrial genome of the devil firefish Pterois miles (Bennett, 1828) was obtained using next generation sequencing approaches. The genome sequence was comprised of 16,497 bp exhibiting the standard vertebrate mitochondrial gene arrangement. Regions of gene overlap, tRNA lengths, as well as start and stop codons were similar to those observed in closely related families (i.e. Sebastidae, Peristediidae). Phylogenetic reconstructions support the polyphyly of Scorpaeniformes, and confirm the close relationship of Scorpaenidae and Sebastidae.


Subject(s)
Fishes/genetics , Genome, Mitochondrial , Animals , Base Sequence , DNA, Concatenated/genetics , DNA, Mitochondrial/genetics , Mitochondrial Proteins/genetics , Phylogeny
8.
Proc Natl Acad Sci U S A ; 112(48): 14912-7, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26627241

ABSTRACT

The Myxozoa comprise over 2,000 species of microscopic obligate parasites that use both invertebrate and vertebrate hosts as part of their life cycle. Although the evolutionary origin of myxozoans has been elusive, a close relationship with cnidarians, a group that includes corals, sea anemones, jellyfish, and hydroids, is supported by some phylogenetic studies and the observation that the distinctive myxozoan structure, the polar capsule, is remarkably similar to the stinging structures (nematocysts) in cnidarians. To gain insight into the extreme evolutionary transition from a free-living cnidarian to a microscopic endoparasite, we analyzed genomic and transcriptomic assemblies from two distantly related myxozoan species, Kudoa iwatai and Myxobolus cerebralis, and compared these to the transcriptome and genome of the less reduced cnidarian parasite, Polypodium hydriforme. A phylogenomic analysis, using for the first time to our knowledge, a taxonomic sampling that represents the breadth of myxozoan diversity, including four newly generated myxozoan assemblies, confirms that myxozoans are cnidarians and are a sister taxon to P. hydriforme. Estimations of genome size reveal that myxozoans have one of the smallest reported animal genomes. Gene enrichment analyses show depletion of expressed genes in categories related to development, cell differentiation, and cell-cell communication. In addition, a search for candidate genes indicates that myxozoans lack key elements of signaling pathways and transcriptional factors important for multicellular development. Our results suggest that the degeneration of the myxozoan body plan from a free-living cnidarian to a microscopic parasitic cnidarian was accompanied by extreme reduction in genome size and gene content.


Subject(s)
Evolution, Molecular , Genome , Myxobolus/genetics , Phylogeny , Animals , Genomics , Polypodium/parasitology
9.
BMC Evol Biol ; 14: 205, 2014 Sep 29.
Article in English | MEDLINE | ID: mdl-25262812

ABSTRACT

BACKGROUND: Myxozoa are a diverse group of metazoan parasites with a very simple organization, which has for decades eluded their evolutionary origin. Their most prominent and characteristic feature is the polar capsule: a complex intracellular structure of the myxozoan spore, which plays a role in host infection. Striking morphological similarities have been found between myxozoan polar capsules and nematocysts, the stinging structures of cnidarians (corals, sea anemones and jellyfish) leading to the suggestion that Myxozoa and Cnidaria share a more recent common ancestry. This hypothesis has recently been supported by phylogenomic evidence and by the identification of a nematocyst specific minicollagen gene in the myxozoan Tetracapsuloides bryosalmonae. Here we searched genomes and transcriptomes of several myxozoan taxa for the presence of additional cnidarian specific genes and characterized these genes within a phylogenetic context. RESULTS: Illumina assemblies of transcriptome or genome data of three myxozoan species (Enteromyxum leei, Kudoa iwatai, and Sphaeromyxa zaharoni) and of the enigmatic cnidarian parasite Polypodium hydriforme (Polypodiozoa) were mined using tBlastn searches with nematocyst-specific proteins as queries. Several orthologs of nematogalectins and minicollagens were identified. Our phylogenetic analyses indicate that myxozoans possess three distinct minicollagens. We found that the cnidarian repertoire of nematogalectins is more complex than previously thought and we identified additional members of the nematogalectin family. Cnidarians were found to possess four nematogalectin/ nematogalectin-related genes, while in myxozoans only three genes could be identified. CONCLUSIONS: Our results demonstrate that myxozoans possess a diverse array of genes that are taxonomically restricted to Cnidaria. Characterization of these genes provide compelling evidence that polar capsules and nematocysts are homologous structures and that myxozoans are highly degenerate cnidarians. The diversity of minicollagens was higher than previously thought, with the presence of three minicollagen genes in myxozoans. Our phylogenetic results suggest that the different myxozoan sequences are the results of ancient divergences within Cnidaria and not of recent specializations of the polar capsule. For both minicollagen and nematogalectin, our results show that myxozoans possess less gene copies than their cnidarian counter parts, suggesting that the polar capsule gene repertoire was simplified with their reduced body plan.


Subject(s)
Collagen/genetics , Galectins/genetics , Myxozoa/genetics , Animals , Collagen/metabolism , Evolution, Molecular , Galectins/metabolism , Myxozoa/metabolism , Phylogeny
10.
Dis Aquat Organ ; 109(1): 35-54, 2014 Apr 23.
Article in English | MEDLINE | ID: mdl-24781795

ABSTRACT

A gonadotropic microsporidian parasite, Obruspora papernae gen. et sp. nov. (Microsporidia: Enterocytozoonidae), is described from Callionymus filamentosus (Teleostei: Callionymidae) in the Mediterranean Sea. The host, a Red Sea invasive species which entered the Mediterranean through the Suez Canal, was first collected in the Levant Basin in 1953, whereas its parasite went unobserved until 2008. Analysis of partial small subunit ribosomal gene sequences (SSU rDNA) placed the new species within the Nucleospora, Desmozoon, and Paranucleospora clade, and as it differs from each of them, it is assigned to a new genus. The development of the parasite is described, and the biological mechanisms underlying this parasite-host system are analyzed. Prevalence of infection approached 80% in female samples throughout most of the year. Males showed no signs of infection, but parasite rDNA was detected in male internal organs. The parasite-induced xenomas progressively occupied and eventually replaced much of the ovary, in some cases producing effective castration. Despite high levels of parasite infection, current trawl fishery statistics indicate that the abundance of Mediterranean populations of the host remains high. The parasite impact on the host population dynamics is unclear. Possible effects of the new microsporidian parasite on the reproductive effort of C. filamentosus and the potential role of another parasite, the ectoparasitic copepod Lernanthropus callionymicola, as an additional host in the life cycle of O. papernae, require further investigation.


Subject(s)
Fish Diseases/parasitology , Introduced Species , Microsporidia/classification , Microsporidia/isolation & purification , Microsporidiosis/veterinary , Animals , Female , Fish Diseases/epidemiology , Fishes , Male , Mediterranean Sea/epidemiology , Microsporidia/genetics , Microsporidia/ultrastructure , Microsporidiosis/epidemiology , Microsporidiosis/parasitology , Phylogeny , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...