Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Adv Sci (Weinh) ; 11(24): e2306675, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38647399

ABSTRACT

The blood brain barrier (BBB) limits the application of most therapeutic drugs for neurological diseases (NDs). Hybrid cell membrane-coated nanoparticles derived from different cell types can mimic the surface properties and functionalities of the source cells, further enhancing their targeting precision and therapeutic efficacy. Neuroinflammation has been increasingly recognized as a critical factor in the pathogenesis of various NDs, especially Alzheimer's disease (AD). In this study, a novel cell membrane coating is designed by hybridizing the membrane from platelets and chemokine (C-C motif) receptor 2 (CCR2) cells are overexpressed to cross the BBB and target neuroinflammatory lesions. Past unsuccessful endeavors in AD drug development underscore the challenge of achieving favorable outcomes when utilizing single-mechanism drugs.Two drugs with different mechanisms of actions into liposomes are successfully loaded to realize multitargeting treatment. In a transgenic mouse model for familial AD (5xFAD), the administration of these drug-loaded hybrid cell membrane liposomes results in a significant reduction in amyloid plaque deposition, neuroinflammation, and cognitive impairments. Collectively, the hybrid cell membrane-coated nanomaterials offer new opportunities for precise drug delivery and disease-specific targeting, which represent a versatile platform for targeted therapy in AD.


Subject(s)
Alzheimer Disease , Blood-Brain Barrier , Disease Models, Animal , Liposomes , Mice, Transgenic , Nanoparticles , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Mice , Nanoparticles/chemistry , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Drug Delivery Systems/methods , Cell Membrane/metabolism , Cell Membrane/drug effects , Humans
2.
J Genet Genomics ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38570113

ABSTRACT

KCNA1 is the coding gene for Kv1.1 voltage-gated potassium-channel α subunit. Three variants of KCNA1 have been reported to manifest as paroxysmal kinesigenic dyskinesia (PKD), but the correlation between them remains unclear due to the phenotypic complexity of KCNA1 variants as well as the rarity of PKD cases. Using the whole exome sequencing followed by Sanger sequencing, we screen for potential pathogenic KCNA1 variants in patients clinically diagnosed with paroxysmal movement disorders and identify three previously unreported missense variants of KCNA1 in three unrelated Chinese families. The proband of one family (c.496G>A, p.A166T) manifests as episodic ataxia type 1, and the other two (c.877G>A, p.V293I and c.1112C>A, p.T371A) manifest as PKD. The pathogenicity of these variants is confirmed by functional studies, suggesting that p.A166T and p.T371A cause a loss-of-function of the channel, while p.V293I leads to a gain-of-function with the property of voltage-dependent gating and activation kinetic affected. By reviewing the locations of PKD-manifested KCNA1 variants in Kv1.1 protein, we find that these variants tend to cluster around the pore domain, which is similar to epilepsy. Thus, our study strengthens the correlation between KCNA1 variants and PKD and provides more information on genotype-phenotype correlations of KCNA1 channelopathy.

3.
J Med Case Rep ; 17(1): 430, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37838704

ABSTRACT

BACKGROUND: Tirofiban is a nonpeptide glycoprotein IIb/IIIa receptor antagonist used widely in patients subjected to percutaneous coronary intervention. While the usage of tirofiban sets an important clinical benefit, severe thrombocytopenia can occur with use of this agent. CASE PRESENTATION: A 76-year-old Chinese man was admitted with 1-month history of sudden onset of chest tightness. He was diagnosed as having subacute inferior myocardial infarction, and percutaneous coronary intervention was performed. After the procedure, patient received tirofiban at 0.15 µg/kg/minute for 4 h. A blood sample was obtained for a complete blood count; severe thrombocytopenia was reported according to routine orders at our hospital. All antiplatelet drugs including tirofiban, aspirin, and clopidogrel were immediately discontinued. The patient received platelet transfusions and was treated with immunoglobulin G. Two days later, the patient's platelet count had increased to 75 × 109/L. There was a significant improvement after day 5, and the platelet count was 112 × 109/L. Seven days after the acute thrombocytopenia, he was discharged with normal platelet count. CONCLUSIONS: Clinicians should be particularly aware of tirofiban-induced thrombocytopenia in routine practice.


Subject(s)
Angioplasty, Balloon, Coronary , Percutaneous Coronary Intervention , Thrombocytopenia , Male , Humans , Aged , Tirofiban/adverse effects , Tyrosine/adverse effects , Platelet Aggregation Inhibitors/adverse effects , Thrombocytopenia/therapy , Percutaneous Coronary Intervention/adverse effects
4.
Neurobiol Aging ; 123: 233-243, 2023 03.
Article in English | MEDLINE | ID: mdl-36641371

ABSTRACT

Frontotemporal dementia (FTD) is the second most common cause of dementia after Alzheimer's disease, characterized by distinct changes in behavior, personality, and language. Our study performed whole exome sequencing and repeat-primed PCR analysis in 29 unrelated FTD patients. Consequently, 2 known pathogenic variants (MAPT: p.P301L; TBK1: p.I450Kfs), and 4 novel variants (MAPT: p.R406Q, p.D430H, p.A330D; GRN: c.350-2A>G) were identified. The functional analysis results showed that phosphorylated tau levels were higher in cells expressing p.R406Q and p.D430H tau than those expressing wild-type tau, especially at the Thr205, Thr231, and Ser396 phosphorylation epitopes. Besides, the p.R406Q and p.D430H variants of MAPT impaired the ability of tau to bind to the microtubules and increased tau self-aggregation. Furthermore, we found that the c.350-2A>G variant caused exon 5 skipping. Our results showed that p.R406Q, p.D430H, and c.350-2A>G variants were classified as pathogenic. Finally, we summarized the clinical characterization of patients carrying pathogenic variants of MAPT in the East Asia populations. Our results broaden the genetic spectrum of FTD with MAPT and GRN variants.


Subject(s)
Frontotemporal Dementia , Pick Disease of the Brain , Humans , East Asian People , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Intercellular Signaling Peptides and Proteins/genetics , Mutation , Progranulins/genetics , tau Proteins/genetics , tau Proteins/metabolism , China
5.
Neurol Genet ; 8(2): e659, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35187229

ABSTRACT

BACKGROUND AND OBJECTIVES: Isolated paroxysmal kinesigenic dyskinesia (PKD) is mainly caused by PRRT2 variants and TMEM151A variants. Patients with proximal 16p11.2 microdeletion (16p11.2MD) (including PRRT2) often have neurodevelopmental phenotypes, whereas a few patients have PKD. Here, we aimed to identify 16p11.2MD in patients with PKD and describe the related phenotypes. METHODS: Whole-exome sequencing and bioinformatics analysis of copy number variant (CNV) were performed in patients with PKD carrying neither PRRT2 nor TMEM151A variant. Quantitative PCR and low-coverage whole-genome sequencing verified the CNV. RESULTS: We identified 9 sporadic patients with PKD and 16p11.2MD (∼535 kb), accounting for 9.6% (9/94) of our patients. Together with 9 previously reported patients with PKD and 16p11.2MD, we found that 16p11.2MD was de novo in 11 of 12 tested patients and inherited from a parent in the other patient. And 80% (12/15) of these patients had a mild language delay, 64.3% (9/14) had compromised learning ability, 42.9% (6/14) had a mild motor delay, and 50% (6/12) had abnormal neuroimaging findings. No severe autism disorders were observed. DISCUSSION: Mild developmental problems may be overlooked. A detailed inquiry of developmental history and CNV testing are necessary to distinguish patients with 16p11.2MD from isolated PKD.

6.
Mov Disord ; 37(3): 608-613, 2022 03.
Article in English | MEDLINE | ID: mdl-35083789

ABSTRACT

BACKGROUND: Mutations in proline-rich transmembrane protein 2 (PRRT2) are the major cause of paroxysmal kinesigenic dyskinesia (PKD). We recently reported transmembrane protein 151A (TMEM151A) mutations caused PKD. Herein, we aimed to conduct phenotypic comparisons of patients with PKD carrying PRRT2 variants, carrying TMEM151A variants, and carrying neither the PRRT2 nor TMEM151A variant. METHODS: Sanger sequencing of PRRT2 and TMEM151A was performed, and phenotypic characteristics were analyzed. RESULTS: In a cohort of 131 PKD probands (108 without PRRT2 variants and 23 newly recruited), five novel TMEM151A variants were identified and one (c.647C > A) occurred de novo. Together with our previous studies, PRRT2 and TMEM151A variants accounted for 34.7% (85/245) and 6.9% (17/245) of PKD probands, respectively. Compared with patients carrying PRRT2 variants, those with TMEM151A variants tended to exbibit dystonia with shorter durations, have no history of benign infantile epilepsy, and have residual attacks/aura when treated with carbamazepine/oxcarbazepine. CONCLUSIONS: Patients with TMEM151A variants have different features from patients with PRRT2 variants. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Chorea , Dystonia , Epilepsy , Humans , Chorea/genetics , Cohort Studies , Dystonia/genetics , Membrane Proteins/genetics , Mutation/genetics , Nerve Tissue Proteins/genetics
7.
Chinese Journal of Surgery ; (12): 32-38, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-935576

ABSTRACT

Objective: To investigate the incidence and treatment of perioperative anemia in patients with gastrointestinal neoplasms in Hubei Province. Methods: The clinicopathological data of 7 474 patients with gastrointestinal neoplasms in 62 hospitals in 15 cities (state) of Hubei Province in 2019 were collected in the form of network database. There were 4 749 males and 2 725 females. The median age of the patients was 62 years (range: 17 to 96 years). The hemoglobin value of the first time in hospital and the first day after operation was used as the criterion of preoperative anemia and postoperative anemia. Anemia was defined as male hemoglobin <120 g/L and female hemoglobin <110.0 g/L, mild anemia as 90 to normal, moderate anemia as 60 to <90 g/L, severe anemia as <60 g/L. The t test and χ2 test were used for inter-group comparison. Results: The overall incidence of preoperative anemia was 38.60%(2 885/7 474), and the incidences of mild anemia, moderate anemia and severe anemia were 25.09%(1 875/7 474), 11.37%(850/7 474) and 2.14%(160/7 474), respectively. The overall incidence of postoperative anemia was 61.40%(4 589/7 474). The incidence of mild anemia, moderate anemia and severe anemia were 48.73%(3 642/7 474), 12.20%(912/7 474) and 0.47%(35/7 474), respectively. The proportion of preoperative anemia patients receiving treatment was 26.86% (775/2 885), and the proportion of postoperative anemia patients receiving treatment was 14.93% (685/4 589). The proportions of preoperative anemia patients in grade ⅢA, grade ⅢB, and grade ⅡA hospitals receiving treatment were 26.12% (649/2 485), 32.32% (85/263), and 29.93% (41/137), and the proportions of postoperative anemia patients receiving treatment were 14.61% (592/4 052), 22.05% (73/331), and 9.71% (20/206). The proportion of intraoperative blood transfusion (16.74% (483/2 885) vs. 3.05% (140/4 589), χ²=434.555, P<0.01) and the incidence of postoperative complications (17.78% (513/2 885) vs. 14.08% (646/4 589), χ²=18.553, P<0.01) in the preoperative anemia group were higher than those in the non-anemia group, and the postoperative hospital stay in the preoperative anemia group was longer than that in the non-anemia group ((14.1±7.3) days vs. (13.3±6.2) days, t=5.202, P<0.01). Conclusions: The incidence of perioperative anemia in patients with gastrointestinal neoplasms is high. Preoperative anemia can increase the demand for intraoperative blood transfusion and affect the short-term prognosis of patients. At present, the concept of standardized treatment of perioperative anemia among gastrointestinal surgeons in Hubei Province needs to be improved.


Subject(s)
Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Young Adult , Anemia/epidemiology , Blood Transfusion , Gastrointestinal Neoplasms/surgery , Length of Stay , Retrospective Studies , Treatment Outcome
10.
CNS Neurosci Ther ; 27(10): 1198-1205, 2021 10.
Article in English | MEDLINE | ID: mdl-34170073

ABSTRACT

INTRODUCTION: Distal myopathies are a group of rare muscle disorders characterized by selective or predominant weakness in the feet and/or hands. In 2019, ACTN2 gene was firstly identified to be a cause of a new adult-onset distal muscular dystrophy calling actininopathy and another distinctly different myopathy, named multiple structured core disease (MsCD). Thus, the various phenotypes and limited mutations in ACTN2-related myopathy make the genotype-phenotype correlation hard to understand. AIMS: To investigate the clinical features and histological findings in a Chinese family with distal myopathy. Whole exome sequencing and several functional studies were performed to explore the pathogenesis of the disease. RESULTS: We firstly identified a novel frameshift variant (c.2504delT, p.Phe835Serfs*66) within ACTN2 in a family including three patients. The patients exhibited adult-onset distal myopathy with multi-minicores, which, interestingly, was more like a combination of MsCD and actininopathy. Moreover, functional analysis using muscle samples revealed that the variant significantly increased the expression level of α-actinin-2 and resulted in abnormal Z-line organization of muscle fiber. Vitro studies suggested aggregate formations might be involved in the pathogenesis of the disease. CONCLUSION: Our results expanded the phenotypes of ACTN2-related myopathy and provided helpful information to clarify the molecular mechanisms.


Subject(s)
Actinin/genetics , Distal Myopathies/genetics , Distal Myopathies/pathology , Frameshift Mutation/genetics , Age of Onset , Asian People , Female , HEK293 Cells , Humans , Immunohistochemistry , Male , Middle Aged , Muscle, Skeletal/pathology , Mutation , Pedigree , Phenotype , Exome Sequencing , Young Adult
11.
Diagnostics (Basel) ; 11(4)2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33920273

ABSTRACT

The segmentation of capillaries in human skin in full-field optical coherence tomography (FF-OCT) images plays a vital role in clinical applications. Recent advances in deep learning techniques have demonstrated a state-of-the-art level of accuracy for the task of automatic medical image segmentation. However, a gigantic amount of annotated data is required for the successful training of deep learning models, which demands a great deal of effort and is costly. To overcome this fundamental problem, an automatic simulation algorithm to generate OCT-like skin image data with augmented capillary networks (ACNs) in a three-dimensional volume (which we called the ACN data) is presented. This algorithm simultaneously acquires augmented FF-OCT and corresponding ground truth images of capillary structures, in which potential functions are introduced to conduct the capillary pathways, and the two-dimensional Gaussian function is utilized to mimic the brightness reflected by capillary blood flow seen in real OCT data. To assess the quality of the ACN data, a U-Net deep learning model was trained by the ACN data and then tested on real in vivo FF-OCT human skin images for capillary segmentation. With properly designed data binarization for predicted image frames, the testing result of real FF-OCT data with respect to the ground truth achieved high scores in performance metrics. This demonstrates that the proposed algorithm is capable of generating ACN data that can imitate real FF-OCT skin images of capillary networks for use in research and deep learning, and that the model for capillary segmentation could be of wide benefit in clinical and biomedical applications.

12.
Neuromuscul Disord ; 31(5): 442-449, 2021 05.
Article in English | MEDLINE | ID: mdl-33846077

ABSTRACT

Reducing body myopathy (RBM) is a rare myopathy characterized by reducing bodies (RBs) in morphological presentation. The clinical manifestations of RBM present a wide clinical spectrum, varying from infantile lethal form through childhood and adult benign forms. FHL1 gene is the causative gene of RBM. To date, only 6 Chinese RBM patients have been reported. Here, we reported the clinical presentations and genetic findings of 3 Chinese RBM patients from two families. Two novel pathogenic variants, c.395G>A and c.401_402insGAC, were identified by whole exome sequencing. Furthermore, by reviewing previous studies, we revealed that most RBM patients manifested with an early onset, symmetric, progressive limb-girdle and axial muscle weakness with joint contractures, rigid spine or scoliosis except familial female patients who exhibited asymmetric benign muscle involvements. Our results provide insightful information to help better diagnose and understand the disease.


Subject(s)
Asian People/genetics , Muscular Diseases/genetics , Adolescent , Adult , Child , China , Female , Genetic Predisposition to Disease , Humans , Intracellular Signaling Peptides and Proteins/genetics , LIM Domain Proteins/genetics , Male , Middle Aged , Muscle Proteins/genetics , Muscle, Skeletal/pathology , Mutation , Young Adult
13.
Brain ; 144(8): 2457-2470, 2021 09 04.
Article in English | MEDLINE | ID: mdl-33751098

ABSTRACT

Sensory neuronopathies are a rare and distinct subgroup of peripheral neuropathies, characterized by degeneration of the dorsal root ganglia neurons. About 50% of sensory neuronopathies are idiopathic and genetic causes remain to be clarified. Through a combination of homozygosity mapping and whole exome sequencing, we linked an autosomal recessive sensory neuronopathy to pathogenic variants in the COX20 gene. We identified eight unrelated families from the eastern Chinese population carrying a founder variant c.41A>G (p.Lys14Arg) within COX20 in either a homozygous or compound heterozygous state. All patients displayed sensory ataxia with a decrease in non-length-dependent sensory potentials. COX20 encodes a key transmembrane protein implicated in the assembly of mitochondrial complex IV. We showed that COX20 variants lead to reduction of COX20 protein in patient's fibroblasts and transfected cell lines, consistent with a loss-of-function mechanism. Knockdown of COX20 expression in ND7/23 sensory neuron cells resulted in complex IV deficiency and perturbed assembly of complex IV, which subsequently compromised cell spare respiratory capacity and reduced cell proliferation under metabolic stress. Consistent with mitochondrial dysfunction in knockdown cells, reduced complex IV assembly, enzyme activity and oxygen consumption rate were also found in patients' fibroblasts. We speculated that the mechanism of COX20 was similar to other causative genes (e.g. SURF1, COX6A1, COA3 and SCO2) for peripheral neuropathies, all of which are functionally important in the structure and assembly of complex IV. Our study identifies a novel causative gene for the autosomal recessive sensory neuronopathy, whose vital function in complex IV and high expression in the proprioceptive sensory neuron further underlines loss of COX20 contributing to mitochondrial bioenergetic dysfunction as a mechanism in peripheral sensory neuron disease.


Subject(s)
Cytochrome-c Oxidase Deficiency/genetics , Electron Transport Complex IV/genetics , Hereditary Sensory and Autonomic Neuropathies/genetics , Loss of Heterozygosity , Mitochondria/genetics , Adolescent , Adult , Cell Proliferation/genetics , Child , Child, Preschool , Cytochrome-c Oxidase Deficiency/physiopathology , Female , Hereditary Sensory and Autonomic Neuropathies/physiopathology , Humans , Male , Median Nerve/physiopathology , Mutation , Neural Conduction/physiology , Pedigree , Radial Nerve/physiopathology , Ulnar Nerve/physiopathology
14.
Gene ; 779: 145495, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33588035

ABSTRACT

OBJECTIVE: To investigate whether TGM6 is a specific causative gene for spinocerebellar ataxia type 35 (SCA35). MATERIALS AND METHODS: The next-generation sequencing (NGS) data consisted of 47 SCA, 762 non-SCA patients and 2827 normal controls were analyzed. The allele frequencies of low frequent and deleterious TGM6 variants were compared. Functional studies were performed in five widely distributed variants (V314M, R342Q, P347L, V391M, L517W). RESULTS: Two TGM6 detrimental variants were identified in one SCA patient, 14 in non-SCA patients and 43 in normal controls, the allele frequencies of TGM6 variants did not differ among the SCA and other controls. Seven reported pathogenic variants (c.7 + 1G > T, c.331C > T, c.1171G > A, c.1478C > T, c.1528G > C, c.1550 T > G and c.1722_1724delAGA) were identified in patients with various neurologic diseases or normal controls. All the 5 widely distributed variants led to destabilization and significantly reduction of enzymatic activity of TG6 as the reported pathogenic mutations. CONCLUSIONS: TGM6 might not be a specific causative gene for SCA35, the relevant clinical consult or diagnostic should be pay more attention.


Subject(s)
Spinocerebellar Ataxias/genetics , Transglutaminases/genetics , Aged , Case-Control Studies , Female , Gene Frequency , HEK293 Cells , Humans , Mutation , Pedigree , Spinocerebellar Ataxias/etiology , Transglutaminases/metabolism
15.
J Neurol Sci ; 412: 116756, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32142967

ABSTRACT

INTRODUCTION: In the past few years, the ß-amyloid 42 peptide and tau protein in cerebrospinal fluid (CSF) have become primary diagnostic biomarkers in differentiating Alzheimer's disease (AD) and cognitive normal controls. As we know, several neurodegenerative diseases have been reported to overlap with AD in neuropathology and clinical symptoms. To examine the discriminative utility of these biomarkers in AD and other neurodegenerative diseases, we measured them in a cohort of Chinese population. METHODS: We measured CSF Aß42, t-tau and p-tau181 by ELISA tests and calculated the ratios of t-tau/Aß42 and p-tau181/Aß42 in 240 Chinese Han patients with AD (n = 82), frontotemporal dementia (FTD, n = 20), Huntington's disease (HD, n = 27), multiple system atrophy (MSA, n = 24), spinocerebellar ataxia type-3 (SCA3, n = 27), amyotrophic lateral sclerosis (ALS, n = 36) and controls (n = 24). RESULTS: As expected, all biomarkers showed high discriminative capacity between AD and non-AD groups (p < .05) except for the elevated CSF t-tau in FTD (p > .05). Comparing with the controls, tau related biomarkers significantly elevated in the FTD (p < .001) and MSA (p < .05) groups. Surprisingly, comparing with controls, we found that CSF Aß42 increased remarkably in the SCA3 (p < .05), HD and ALS groups (p < .001), achieving a high specificity, respectively. CONCLUSION: To our best knowledge, this is the first comprehensive study in the Han Chinese population that confirmed the discriminative utility of CSF Aß42 and tau biomarkers between AD and other neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Alzheimer Disease/diagnosis , Amyloid beta-Peptides , Biomarkers , China , Humans , Neurodegenerative Diseases/diagnosis , Peptide Fragments , tau Proteins
16.
CNS Neurosci Ther ; 26(1): 39-46, 2020 01.
Article in English | MEDLINE | ID: mdl-31124310

ABSTRACT

AIMS: PRRT2 variants are associated with various paroxysmal disorders. To date, more than 90 PRRT2 variants have been reported in PRRT2-related disorders. Lack of functional study in majority of missense variants makes their pathogenicity uncertain. We aim to evaluate the clinical significance of PRRT2 missense variants by performing in vitro experiments. METHODS: We systematically reviewed PRRT2-related disorders and summarized reported PRRT2 missense variants. Protein expression and subcellular localization of mutant PRRT2 were investigated in mammal cells. American College of Medical Genetics and Genomics (ACMG) guidelines were used to analyze the pathogenicity of PRRT2 missense variants. RESULTS: A total of 29 PRRT2 missense variants were identified in PRRT2-related disorders. Ten variants were observed to affect both subcellular localization and protein level, three variants only affect membrane localization, and two variants only affect protein level. According to ACMG guidelines, 15 variants were finally classified as "likely pathogenic", three as "benign", three as "likely benign", and eight as "uncertain significance" variants. The likely pathogenic variants were concentrated in the C-terminal of PRRT2. CONCLUSIONS: The pathogenicity of eight uncertain significance variants needs further investigation. C-terminal of PRRT2 is crucial for its physiological function.


Subject(s)
Membrane Proteins/genetics , Mutation, Missense/genetics , Nerve Tissue Proteins/genetics , Asian People , Cell Membrane/metabolism , Dyskinesias/genetics , Gene Expression Regulation/genetics , Genetic Predisposition to Disease , Genetic Variation , HEK293 Cells , HeLa Cells , Humans , Membrane Proteins/biosynthesis , Nerve Tissue Proteins/biosynthesis , Plasmids , Subcellular Fractions/metabolism
17.
Neurobiol Aging ; 76: 215.e15-215.e21, 2019 04.
Article in English | MEDLINE | ID: mdl-30598257

ABSTRACT

Familial Alzheimer's disease (FAD) is characterized by a positive family history of dementia and typically occurs at an early age with an autosomal dominant pattern of inheritance. Amyloid precursor protein (APP), presenilin1 (PSEN1), and presenilin2 (PSEN2) are the major causative genes of FAD. The spectrum of mutations in patients with FAD has been investigated extensively in the Caucasian population but rarely in the Chinese population. Here, we performed whole-exome sequencing in a total of 15 unrelated Chinese patients with FAD. Among them, 12 were found to carry missense variants in APP, PSEN1, and PSEN2. Two novel variants (APP: p.D244G, p.K687Q), 3 variants not previously associated with FAD (APP: p.T297M, p.D332G; PSEN1: p.R157S), and 7 previously reported pathogenic variants (APP: p.V717I; PSEN1: p.M139I, p.T147I, p.L173W, p.F177S, p.R269H; PSEN2: p.V139M) were identified. The novel variant APP p.K687Q was classified as likely pathogenic, and the other 4 variants (APP: p.D244G, p.T297M, p.D332G; PSEN1: p.R157S) were classified as uncertain significance. Therefore, APP, PSEN1, and PSEN2 mutations account for 2 (25.0%), 5 (62.5%), and 1 (12.5%) of the genotyped cases positive for mutations, respectively. Furthermore, the genotype-phenotype correlations were described. Our findings broaden the genetic spectrum of FAD with APP, PSEN1, and PSEN2 variants.


Subject(s)
Alzheimer Disease/genetics , Exome Sequencing , Genetic Association Studies , Mutation, Missense/genetics , Adult , Amyloid beta-Protein Precursor/genetics , Asian People/genetics , Female , Genes, Dominant/genetics , Genotype , Humans , Male , Middle Aged , Presenilin-1/genetics , Presenilin-2/genetics
18.
Journal of Medical Postgraduates ; (12): 973-977, 2019.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-818358

ABSTRACT

Artificial Intelligence has been widely applied in cardiovascular diseases. Coronary artery disease, one of the most familiar cardiovascular disease, relies highly on visualized functional tests in its diagnosis and risk stratification, which caters to the advantage of artificial intelligence. Recently, several inspiring results of combining artificial intelligence and related functional tests in diagnosis and risk stratification of coronary artery disease were published worldwide. This review focuses on the application progress of artificial intelligence in diagnosis and risk stratification of coronary artery disease.

19.
Peptides ; 90: 100-110, 2017 04.
Article in English | MEDLINE | ID: mdl-28174072

ABSTRACT

In arthropods, mature females under certain conditions produce and release encysted gastrula embryos that enter diapause, a state of obligate dormancy. The process is presumably regulated by diapause hormone (DH) and diapause hormone receptor (DHR) that were identified in the silkworm, Bombyx mori and other insects. However, the molecular structure and function of DHR in crustaceans remains unknown. Here, a DHR-like gene from parthenogenetic Artemia (Ar-DHR) was isolated and sequenced. The cDNA sequence consists of 1410bp with a 1260-bp open reading frame encoding a protein consisting of 420 amino acid residues. The results of real-time PCR (qRT-PCR) and Western blot analysis showed that the mRNA and protein of Ar-DHR were mainly expressed at the diapause stage. Furthermore, we found that Ar-DHR was located on the cell membrane of the pre-diapause cyst but in the cytoplasm of the diapause cyst by analysis of immunofluorescence. In vivo knockdown of Ar-DHR by RNA interference (RNAi) and antiserum neutralization consistently inhibited diapause cysts formation. The results indicated that Ar-DHR plays an important role in the induction and maintenance of embryonic diapause in Artemia. Thus, our findings provide an insight into the regulation of diapause formation in Artemia and the function of Ar-DHR.


Subject(s)
Artemia/genetics , Diapause, Insect/genetics , Neuropeptides/genetics , Amino Acid Sequence/genetics , Animals , Bombyx/genetics , Bombyx/growth & development , Female , Gene Expression Regulation , Insect Proteins/genetics , Parthenogenesis/genetics , Protein Precursors/genetics , RNA Interference , RNA, Messenger/genetics
20.
Mol Cell Biol ; 37(7)2017 04 01.
Article in English | MEDLINE | ID: mdl-28031330

ABSTRACT

As a prominent characteristic of cell life, the regulation of cell quiescence is important for proper development, regeneration, and stress resistance and may play a role in certain degenerative diseases. However, the mechanism underlying quiescence remains largely unknown. Encysted embryos of Artemia are useful for studying the regulation of this state because they remain quiescent for prolonged periods during diapause, a state of obligate dormancy. In the present study, SET domain-containing protein 4, a histone lysine methyltransferase from Artemia, was identified, characterized, and named Ar-SETD4. We found that Ar-SETD4 was expressed abundantly in Artemia diapause embryos, in which cells were in a quiescent state. Meanwhile, trimethylated histone H4K20 (H4K20me3) was enriched in diapause embryos. The knockdown of Ar-SETD4 reduced the level of H4K20me3 significantly and prevented the formation of diapause embryos in which neither the cell cycle nor embryogenesis ceased. The catalytic activity of Ar-SETD4 on H4K20me3 was confirmed by an in vitro histone methyltransferase (HMT) assay and overexpression in cell lines. This study provides insights into the function of SETD4 and the mechanism of cell quiescence regulation.


Subject(s)
Artemia/embryology , Artemia/metabolism , Biocatalysis , Cell Cycle , Diapause, Insect , Histones/metabolism , Lysine/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Animals , Artemia/cytology , Base Sequence , Cell Division , Cell Line, Tumor , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Gene Knockdown Techniques , Methylation , Transcription Factors/chemistry , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...