Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Hortic Res ; 10(3): uhad018, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36968187

ABSTRACT

Analyzing and comparing the effects of labor-saving cultivation modes on photosynthesis, as well as studying their vertical canopy architecture, can improve the tree structure of high-quality and high-yield citrus and selection of labor-saving cultivation modes. The photosynthesis of 1080 leaves of two labor-saving cultivation modes (wide-row and narrow-plant mode and fenced mode) comparing with the traditional mode were measured, and nitrogen content of all leaves and photosynthetic nitrogen use efficiency (PNUE) were determined. Unmanned aerial vehicle (UAV)-based light detection and ranging (LiDAR) data were used to assess the vertical architecture of three citrus cultivation modes. Results showed that for the wide-row and narrow-plant and traditional modes leaf photosynthetic CO2 assimilation rate, stomatal conductance, and transpiration rate of the upper layer were significantly higher than those of the middle layer, and values of the middle layer were markedly higher than those of the lower layer. In the fenced mode, a significant difference in photosynthetic factors between the upper and middle layers was not observed. A vertical canopy distribution had a more significant effect on PNUE in the traditional mode. Leaves in the fenced mode had distinct photosynthetic advantages and higher PNUE. UAV-based LiDAR data effectively revealed the differences in the vertical canopy architecture of citrus trees by enabling calculating the density and height percentile of the LiDAR point cloud. The point cloud densities of three cultivation modes were significantly different for all LiDAR density slices, especially at higher canopy heights. The labor-saving modes, particularly the fenced mode, had significantly higher height percentile data.

2.
Environ Monit Assess ; 188(5): 273, 2016 May.
Article in English | MEDLINE | ID: mdl-27056478

ABSTRACT

To learn the forest dynamics and evaluate the ecosystem services of forest effectively, a timely acquisition of spatial and quantitative information of forestland is very necessary. Here, a new method was proposed for mapping forest cover changes by combining multi-scale satellite remote-sensing imagery with time series data. Using time series Normalized Difference Vegetation Index products derived from the Moderate Resolution Imaging Spectroradiometer images (MODIS-NDVI) and Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) images as data source, a hierarchy stepwise analysis from coarse scale to fine scale was developed for detecting the forest change area. At the coarse scale, MODIS-NDVI data with 1-km resolution were used to detect the changes in land cover types and a land cover change map was constructed using NDVI values at vegetation growing seasons. At the fine scale, based on the results at the coarse scale, Landsat TM/ETM+ data with 30-m resolution were used to precisely detect the forest change location and forest change trend by analyzing time series forest vegetation indices (IFZ). The method was tested using the data for Hubei Province, China. The MODIS-NDVI data from 2001 to 2012 were used to detect the land cover changes, and the overall accuracy was 94.02 % at the coarse scale. At the fine scale, the available TM/ETM+ images at vegetation growing seasons between 2001 and 2012 were used to locate and verify forest changes in the Three Gorges Reservoir Area, and the overall accuracy was 94.53 %. The accuracy of the two layer hierarchical monitoring results indicated that the multi-scale monitoring method is feasible and reliable.


Subject(s)
Environmental Monitoring/methods , Forests , Satellite Imagery , China , Ecosystem , Seasons
3.
Ying Yong Sheng Tai Xue Bao ; 25(12): 3683-93, 2014 Dec.
Article in Chinese | MEDLINE | ID: mdl-25876423

ABSTRACT

The Three Gorges Reservoir area (TGR area) , one of the most sensitive ecological zones in China, has dramatically changes in ecosystem configurations and services driven by the Three Gorges Engineering Project and its related human activities. Thus, understanding the dynamics of ecosystem configurations, ecological processes and ecosystem services is an attractive and critical issue to promote regional ecological security of the TGR area. The remote sensing of environment is a promising approach to the target and is thus increasingly applied to and ecosystem dynamics of the TGR area on mid- and macro-scales. However, current researches often showed controversial results in ecological and environmental changes in the TGR area due to the differences in remote sensing data, scale, and land-use/cover classification. Due to the complexity of ecological configurations and human activities, challenges still exist in the remote-sensing based research of ecological and environmental changes in the TGR area. The purpose of this review was to summarize the research advances in remote sensing of ecological and environmental changes in the TGR area. The status, challenges and trends of ecological and environmental remote-sensing in the TGR area were further discussed and concluded in the aspect of land-use/land-cover, vegetation dynamics, soil and water security, ecosystem services, ecosystem health and its management. The further researches on the remote sensing of ecological and environmental changes were proposed to improve the ecosystem management of the TGR area.


Subject(s)
Ecology , Environmental Monitoring/methods , Remote Sensing Technology , China , Ecosystem , Human Activities , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...