Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(24): e202316299, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38422222

ABSTRACT

Vinylene-linked two-dimensional polymers (V-2DPs) and their layer-stacked covalent organic frameworks (V-2D COFs) featuring high in-plane π-conjugation and robust frameworks have emerged as promising candidates for energy-related applications. However, current synthetic approaches are restricted to producing V-2D COF powders that lack processability, impeding their integration into devices, particularly within membrane technologies reliant upon thin films. Herein, we report the novel on-water surface synthesis of vinylene-linked cationic 2DPs films (V-C2DP-1 and V-C2DP-2) via Knoevenagel polycondensation, which serve as the anion-selective electrode coating for highly-reversible and durable zinc-based dual-ion batteries (ZDIBs). Model reactions and theoretical modeling revealed the enhanced reactivity and reversibility of the Knoevenagel reaction on the water surface. On this basis, we demonstrated the on-water surface 2D polycondensation towards V-C2DPs films that show large lateral size, tunable thickness, and high chemical stability. Representatively, V-C2DP-1 presents as a fully crystalline and face-on oriented film with in-plane lattice parameters of a=b≈43.3 Å. Profiting from its well-defined cationic sites, oriented 1D channels, and stable frameworks, V-C2DP-1 film possesses superior bis(trifluoromethanesulfonyl)imide anion (TFSI-)-transport selectivity (transference, t_=0.85) for graphite cathode in high-voltage ZDIBs, thus triggering additional TFSI--intercalation stage and promoting its specific capacity (from ~83 to 124 mAh g-1) and cycling life (>1000 cycles, 95 % capacity retention).

2.
Adv Mater ; 36(1): e2305882, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37690084

ABSTRACT

The coupling of different 2D materials (2DMs) to form van der Waals heterostructures (vdWHs) is a powerful strategy for adjusting the electronic properties of 2D semiconductors, for applications in opto-electronics and quantum computing. 2D molybdenum disulfide (MoS2 ) represents an archetypical semiconducting, monolayer thick versatile platform for the generation of hybrid vdWH with tunable charge transport characteristics through its interfacing with molecules and assemblies thereof. However, the physisorption of (macro)molecules on 2D MoS2 yields hybrids possessing a limited thermal stability, thereby jeopardizing their technological applications. Herein, the rational design and optimized synthesis of 2D covalent organic frameworks (2D-COFs) for the generation of MoS2 /2D-COF vdWHs exhibiting strong interlayer coupling effects are reported. The high crystallinity of the 2D-COF films makes it possible to engineer an ultrastable periodic doping effect on MoS2 , boosting devices' field-effect mobility at room temperature. Such a performance increase can be attributed to the synergistic effect of the efficient interfacial electron transfer process and the pronounced suppression of MoS2 's lattice vibration. This proof-of-concept work validates an unprecedented approach for the efficient modulation of the electronic properties of 2D transition metal dichalcogenides toward high-performance (opto)electronics for CMOS digital circuits.

3.
Angew Chem Int Ed Engl ; 62(16): e202218767, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36752105

ABSTRACT

By employing a mechanically controllable break junction technique, we have realized an ideal single molecular linear actuator based on dithienylethene (DTE) based molecular architecture, which undergoes reversible photothermal isomerization when subjected to UV irradiation under ambient conditions. As a result, open form (compressed, UV OFF) and closed form (elongated, UV ON) of dithienylethene-based molecular junctions are achieved. Interestingly, the mechanical actuation is achieved without changing the conductance of the molecular junction around the Fermi level over several cycles, which is an essential property required for an ideal single molecular actuator. Our study demonstrates a unique example of achieving a perfect balance between tunneling width and barrier height change upon photothermal isomerization, resulting in no change in conductance but a change in the molecular length, which results in mechanical actuation at the single molecular level.

4.
Angew Chem Int Ed Engl ; 61(49): e202209762, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36161682

ABSTRACT

Vinylene-linked two-dimensional covalent organic frameworks (V-2D-COFs) have shown great promise in electronics and optoelectronics. However, only a few reactions for V-2D-COFs have been developed hitherto. Besides the kinetically low reversibility of C=C bond formation, another underlying issue facing the synthesis of V-2D-COFs is the attainment of high (E)-alkene selectivity to ensure the appropriate symmetry of 2D frameworks. Here, we tailor the E/Z selectivity of the Wittig reaction by employing a proper catalyst (i.e., Cs2 CO3 ) to obtain more stable intermediates and elevating the temperature across the reaction barrier. Subsequently, the Wittig reaction is innovatively utilized for the synthesis of four crystalline V-2D-COFs by combining aldehydes and ylides. Importantly, the efficient conjugation and decent crystallinity of the resultant V-2D-COFs are demonstrated by their high charge carrier mobilities over 10 cm2  V-1 s-1 , as revealed by non-contact terahertz (THz) spectroscopy.

5.
RSC Adv ; 12(20): 12283-12291, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35480357

ABSTRACT

Two-dimensional Covalent Organic Frameworks (2D COFs) have attracted considerable interest because of their potential for a broad range of applications. Different combinations of the monomeric units can lead to potentially novel materials with varying physico-chemical properties. In this study, we investigate the electronic properties of various 2D COFs with square lattice topology based on a tight-binding density functional theory approach. We first classify the 2D COFs into different classes according to the degree of π-conjugation. Interestingly, this classification is recovered by using a similarity measure based on specific features of the electronic band-structure of the COFs. Further, we study the effect of aromaticity on the electronic structure of fully-conjugated COFs. Our results show that the conjugation and aromaticity are keys in the electronic band-structure of COFs.

6.
Angew Chem Int Ed Engl ; 61(21): e202202492, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35253336

ABSTRACT

Vinylene-linked two-dimensional conjugated covalent organic frameworks (V-2D-COFs), belonging to the class of two-dimensional conjugated polymers, have attracted increasing attention due to their extended π-conjugation over the 2D backbones associated with high chemical stability. The Knoevenagel polycondensation has been demonstrated as a robust synthetic method to provide cyano (CN)-substituted V-2D-COFs with unique optoelectronic, magnetic, and redox properties. Despite the successful synthesis, it remains elusive for the relevant polymerization mechanism, which leads to relatively low crystallinity and poor reproducibility. In this work, we demonstrate the novel synthesis of CN-substituted V-2D-COFs via the combination of Knoevenagel polycondensation and water-assisted dynamic Michael-addition-elimination, abbreviated as KMAE polymerization. The existence of C=C bond exchange between two diphenylacrylonitriles (M1 and M6) is firstly confirmed via in situ high-temperature NMR spectroscopy study of model reactions. Notably, the intermediate M4 synthesized via Michael-addition can proceed the Michael-elimination quantitatively, leading to an efficient C=C bond exchange, unambiguously confirming the dynamic nature of Michael-addition-elimination. Furthermore, the addition of water can significantly promote the reaction rate of Michael-addition-elimination for highly efficient C=C bond exchange within 5 mins. As a result, the KMAE polymerization provides a highly efficient strategy for the synthesis of CN-substituted V-2D-COFs with high crystallinity, as demonstrated by four examples of V-2D-COF-TFPB-PDAN, V-2D-COF-TFPT-PDAN, V-2D-COF-TFPB-BDAN, and V-2D-COF-HATN-BDAN, based on the simulated and experimental powder X-ray diffraction (PXRD) patterns as well as N2 -adsorption-desorption measurements. Moreover, high-resolution transmission electron microscopy (HR-TEM) analysis shows crystalline domain sizes ranging from 20 to 100 nm for the newly synthesized V-2D-COFs.

7.
ACS Nano ; 16(4): 4989-5035, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35318848

ABSTRACT

There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light-matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral-optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light-matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies.

8.
Chemistry ; 28(20): e202104502, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35157327

ABSTRACT

The interest in two-dimensional conjugated polymers (2D CPs) has increased significantly in recent years. In particular, vinylene-linked 2D CPs with fully in-plane sp2 -carbon-conjugated structures, high thermal and chemical stability, have become the focus of attention. Although the Horner-Wadsworth-Emmons (HWE) reaction has been recently demonstrated in synthesizing vinylene-linked 2D CPs, it remains largely unexplored due to the challenge in synthesis. In this work, we reveal the control of crystallinity of 2D CPs during the solvothermal synthesis of 2D-poly(phenylene-quinoxaline-vinylene)s (2D-PPQVs) and 2D-poly(phenylene-vinylene)s through the HWE polycondensation. The employment of fluorinated phosphonates and rigid aldehyde building blocks is demonstrated as crucial factors in enhancing the crystallinity of the obtained 2D CPs. Density functional theory (DFT) calculations reveal the critical role of the fluorinated phosphonate in enhancing the reversibility of the (semi)reversible C-C single bond formation.

9.
ACS Appl Mater Interfaces ; 13(22): 26411-26420, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34034486

ABSTRACT

Two-dimensional covalent organic frameworks (2D COFs) have attracted attention as versatile active materials in many applications. Recent advances have demonstrated the synthesis of monolayer 2D COF via an air-water interface. However, the interfacial 2D polymerization mechanism has been elusive. In this work, we have used a multiscale modeling strategy to study dimethylmethylene-bridged triphenylamine building blocks confined at the air-water interface to form a 2D COF via Schiff-base reaction. A synergy between the computational investigations and experiments allowed the synthesis of a 2D-COF with one of the linkers considered. Our simulations complement the experimental characterization and show the preference of the building blocks to be at the interface with a favorable orientation for the polymerization. The air-water interface is shown to be a key factor to stabilize a flat conformation when a dimer molecule is considered. The structural and electronic properties of the monolayer COFs based on the two monomers are calculated and show a semiconducting nature with direct bandgaps. Our strategy provides a first step toward the in silico polymerization of 2D COFs at air-water interfaces capturing the initial steps of the synthesis up to the prediction of electronic properties of the 2D material.

10.
Nanoscale ; 13(2): 1077-1085, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33393581

ABSTRACT

Two-dimensional Covalent Organic Frameworks (2D COFs) have attracted a lot of interest because of their potential for a broad range of applications. Different combinations of their molecular building blocks can lead to new materials with different physical and chemical properties. In this study, the elasticity of different single-layer tetrabenzoporphyrin (H2-TBPor) and phthalocyanine (H2-Pc) based 2D COFs is numerically investigated using a density-functional based tight-binding approach. Specifically, we calculate the 2D bulk modulus and the equivalent spring constants of the respective molecular building-blocks. Using a spring network model we are able to predict the 2D bulk modulus based on the properties of the isolated molecules. This provides a path to optimize elastic properties of 2D COFs.

11.
Angew Chem Int Ed Engl ; 59(52): 23620-23625, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-32959467

ABSTRACT

In this work, we demonstrate the first synthesis of vinylene-linked 2D CPs, namely, 2D poly(phenylenequinoxalinevinylene)s 2D-PPQV1 and 2D-PPQV2, via the Horner-Wadsworth-Emmons (HWE) reaction of C2 -symmetric 1,4-bis(diethylphosphonomethyl)benzene or 4,4'-bis(diethylphosphonomethyl)biphenyl with C3 -symmetric 2,3,8,9,14,15-hexa(4-formylphenyl)diquinoxalino[2,3-a:2',3'-c]phenazine as monomers. Density functional theory (DFT) simulations unveil the crucial role of the initial reversible C-C single bond formation for the synthesis of crystalline 2D CPs. Powder X-ray diffraction (PXRD) studies and nitrogen adsorption-desorption measurements demonstrate the formation of proclaimed crystalline, dual-pore structures with surface areas of up to 440 m2 g-1 . More importantly, the optoelectronic properties of the obtained 2D-PPQV1 (Eg =2.2 eV) and 2D-PPQV2 (Eg =2.2 eV) are compared with those of cyano-vinylene-linked 2D-CN-PPQV1 (Eg =2.4 eV) produced by the Knoevenagel reaction and imine-linked 2D COF analog (2D-C=N-PPQV1, Eg =2.3 eV), unambiguously proving the superior conjugation of the vinylene-linked 2D CPs using the HWE reaction.

12.
Langmuir ; 36(39): 11600-11609, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32924496

ABSTRACT

The investigation of molecular interactions between silica phases and organic components is crucial for elucidating the main steps involved in the biosilica mineralization process. In this respect, the structural characterization of the organic/inorganic interface is particularly useful for a deeper understanding of the dominant mechanisms of biomineralization. In this work, we have investigated the interaction of selectively 13C- and 15N-labeled atoms of organic long-chain polyamines (LCPAs) with 29Si-labeled atoms of a silica layer at the molecular level. In particular, silica/LCPA nanocomposites were analyzed by solid-state NMR spectroscopy in combination with all-atom molecular dynamics simulations. Solid-state NMR experiments allow the determination of 29Si-15N and 29Si-13C internuclear distances, providing the parameters for direct verification of atomistic simulations. Our results elucidate the relevant molecular conformations as well as the nature of the interaction between the LCPA and a silica substrate. Specifically, distances and second moments suggest a picture compatible with (i) LCPA completely embedded in the silica phase and (ii) the charged amino groups located in close vicinity of silanol groups.

13.
Nano Lett ; 20(10): 7077-7086, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32786950

ABSTRACT

The physical origin of the so-called chirality-induced spin selectivity (CISS) effect has puzzled experimental and theoretical researchers over the past few years. Early experiments were interpreted in terms of unconventional spin-orbit interactions mediated by the helical geometry. However, more recent experimental studies have clearly revealed that electronic exchange interactions also play a key role in the magnetic response of chiral molecules in singlet states. In this investigation, we use spin-polarized closed-shell density functional theory calculations to address the influence of exchange contributions to the interaction between helical molecules as well as of helical molecules with magnetized substrates. We show that exchange effects result in differences in the interaction properties with magnetized surfaces, shedding light into the possible origin of two recent important experimental results: enantiomer separation and magnetic exchange force microscopy with AFM tips functionalized with helical peptides.

14.
J Mater Chem B ; 8(1): 155-160, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31782469

ABSTRACT

Oxytocin is a peptide hormone with high affinity to both Zn2+ and Cu2+ ions compared to other metal ions. This affinity makes oxytocin an attractive recognition layer for monitoring the levels of these essential ions in biofluids. Native oxytocin cannot differentiate between Cu2+ and Zn2+ ions and hence it is not useful for sensing Zn2+ in the presence of Cu2+. We elucidated the effect of the terminal amine group of oxytocin on the affinity toward Cu2+ using theoretical calculations. We designed a new Zn2+ selective oxytocin-based biosensor that utilizes the terminal amine for surface anchoring, also preventing the response to Cu2+. The biosensor shows exceptional selectivity and very high sensitivity to Zn2+ in impedimetric biosensing. This study shows for the first time an oxytocin derived sensor that can be used directly for sensing Zn2+ in the presence of Cu2+.


Subject(s)
Biosensing Techniques , Oxytocin/analysis , Zinc/metabolism , Gold/chemistry , Protein Binding , Thioctic Acid/chemistry
15.
Inorg Chem ; 58(16): 10637-10647, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31385516

ABSTRACT

Two iron porphyrin complexes with either mesityl (FeTMP) or thiophene (FeT3ThP) peripheral substituents were attached to basal pyrolytic graphite and Ag electrodes via different immobilization methods. By combining cyclic voltammetry and in-operando surface-enhanced Raman spectroscopy along with MD simulations and DFT calculations, their respective surface attachment, redox chemistry and activity toward electrocatalytic oxygen reduction was investigated. For both porphyrin complexes, it could be shown that catalytic activity is restricted to the first (few) molecular layer(s), although electrodes covered with thiophene-substituted complexes showed a better capability to consume the oxygen at a given overpotential even in thicker films. The spectroscopic data and simulations suggest that both porphyrin complexes attach to a Ag electrode surface in a way that maximum planarity and minimum distance between the catalytic iron site and the electrode is achieved. However, due to the distinctive design of the FeT3ThP complex, the thiophene rings are capable of occupying a conformation, via rotation around the bonding axis to the porphyrin, in which all four sulfur atoms can coordinate to the Ag surface. This effect creates a dense and planar surface coverage of the porphyrin on the electrode facilitating a fast (multi) electron transfer via several covalent Ag-S bonds. In contrast, bulky mesityl groups as peripheral substituents, which have been initially introduced to prevent aggregation and improve catalytic behavior in solution, exert a negative effect on the overall electrocatalytic performance in the immobilized state as a less dense coverage and less stable interactions with the surface are formed. Our results underline the importance of rationally designed heterogenized molecular catalysts to achieve optimal turnover, which not only strictly applies to the here discussed oxygen reduction reaction but eventually holds also true for other energy conversion reactions such as carbon dioxide reduction.

16.
Langmuir ; 35(34): 11114-11122, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31361147

ABSTRACT

Peptides are very common recognition entities that are usually attached to surfaces using multistep processes. These processes require modification of the native peptides and of the substrates. Using functional groups in native peptides for their assembly on surfaces without affecting their biological activity can facilitate the preparation of biosensors. Herein, we present a simple single-step formation of native oxytocin monolayer on gold surface. These surfaces were characterized by atomic force spectroscopy, spectroscopic ellipsometry, and X-ray photoelectron spectroscopy. We took advantage of the native disulfide bridge of the oxytocin for anchoring the peptide to the Au surface, while preserving the metal-ion binding properties. Self-assembled oxytocin monolayer was used by electrochemical impedance spectroscopy for metal-ion sensing leading to subnanomolar sensitivities for zinc or copper ions.

17.
Chemistry ; 25(26): 6562-6568, 2019 May 07.
Article in English | MEDLINE | ID: mdl-30900781

ABSTRACT

Cyano-substituted polyphenylene vinylenes (PPVs) have been the focus of research for several decades owing to their interesting optoelectronic properties and potential applications in organic electronics. With the advent of organic two-dimensional (2D) crystals, the question arose as to how the chemical and optoelectronic advantages of PPVs evolve in 2D compared with their linear counterparts. In this work, we present the efficient synthesis of two novel 2D fully sp2 -carbon-linked crystalline PPVs and investigate the essentiality of inorganic bases for their catalytic formation. Notably, among all bases screened, cesium carbonate (Cs2 CO3 ) plays a crucial role and enables reversibility in the first step with subsequent structure locking by formation of a C=C double bond to maintain crystallinity, which is supported by density functional theory (DFT) calculations. A quantifiable energy diagram of a "quasi-reversible reaction" is proposed, which allows the identification of further suitable C-C bond formation reactions for 2D polymerizations. Moreover, the narrowing of the HOMO-LUMO gap is delineated by expanding the conjugation into two dimensions. To enable environmentally benign processing, the post-modification of 2D PPVs is further performed, which renders stable dispersions in the aqueous phase.

18.
Langmuir ; 35(8): 2997-3004, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30707589

ABSTRACT

The ability to tune the electronic properties of oxide-bearing semiconductors such as Si/SiO2 or transparent metal oxides such as indium-tin oxide (ITO) is of great importance in both electronic and optoelectronic device applications. In this work, we describe a process that was conducted on n-type Si/SiO2 and ITO to induce changes in the substrate work function (WF). The substrates were modified by a two-step synthesis comprising a covalent attachment of coupling agents' monolayer followed by in situ anchoring reactions of polarizable chromophores. The coupling agents and chromophores were chosen with opposite dipole orientations, which enabled the tunability of the substrates' WF. In the first step, two coupling agents with opposite molecular dipole were assembled. The coupling agent with a negative dipole induced a decrease in WF of modified substrates, while the coupling agent with a positive dipole produced an increase in WFs of both ITO and Si substrates. The second modification step consisted of in situ anchoring reaction of polarizable chromophores with opposite dipoles to the coupling layer. This modification led to an additional change in the WFs of both Si/SiO2 and ITO substrates. The WF was measured by contact potential difference and modeled by density functional theory-based theoretical calculations of the WF for each of the assembly steps. A good fit was obtained between the calculated and experimental trends. This ability to design and tune the WF of ITO substrates was implemented in an organic electronic device with improved I- V characteristics in comparison to a bare ITO-based device.

19.
Nat Commun ; 9(1): 4051, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30282989

ABSTRACT

Mass transport through graphene is receiving increasing attention due to the potential for molecular sieving. Experimental studies are mostly limited to the translocation of protons, ions, and water molecules, and results for larger molecules through graphene are rare. Here, we perform controlled radical polymerization with surface-anchored self-assembled initiator monolayer in a monomer solution with single-layer graphene separating the initiator from the monomer. We demonstrate that neutral monomers are able to pass through the graphene (via native defects) and increase the graphene defects ratio (Raman ID/IG) from ca. 0.09 to 0.22. The translocations of anionic and cationic monomers through graphene are significantly slower due to chemical interactions of monomers with the graphene defects. Interestingly, if micropatterned initiator-monolayers are used, the translocations of anionic monomers apparently cut the graphene sheet into congruent microscopic structures. The varied interactions between monomers and graphene defects are further investigated by quantum molecular dynamics simulations.

20.
J Phys Chem Lett ; 9(18): 5453-5459, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30188726

ABSTRACT

Chirality-induced spin selectivity (CISS) is a recently discovered effect, whose precise microscopic origin has not yet been fully elucidated; it seems, however, clear that spin-orbit interaction plays a pivotal role. Various model Hamiltonian approaches have been proposed, suggesting a close connection between spin selectivity and filtering and helical symmetry. However, first-principles studies revealing the influence of chirality on the spin polarization are missing. To clearly demonstrate the influence of the helical conformation on the spin polarization properties, we have carried out spin-dependent Density-Functional Theory (DFT) based transport calculations for a model molecular system. It consists of α-helix and ß-strand conformations of an oligo-glycine peptide, which is bonded to a nickel electrode and to a gold electrode in a two-terminal setup, similar to a molecular junction or a local probe, for example, in STM or AFM configurations. We have found that the α-helix conformation displays a spin polarization, calculated through the intrinsic magneto-resistance of the junction, about 100-1000 times larger than the linear ß-strand, clearly demonstrating the crucial role played by the molecular helical geometry on the enhancement of spin polarization associated with the CISS effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...