Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 393: 130149, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38049017

ABSTRACT

The pursuit of carbon neutrality goals has sparked considerable interest in expanding bioplastics production from microbial cell factories. One prominent class of bioplastics, polyhydroxyalkanoates (PHA), is generated by specific microorganisms, serving as carbon and energy storage materials. To begin with, a native PHA producer, Cupriavidus necator (formerly Ralstonia eutropha) is extensively studied, covering essential topics such as carbon source selection, cultivation techniques, and accumulation enhancement strategies. Recently, various hosts including archaea, bacteria, cyanobacteria, yeast, and plants have been explored, stretching the limit of microbial PHA production. This review provides a comprehensive overview of current advancements in PHA bioproduction, spanning from the native to diversified cell factories. Recovery and purification techniques are discussed, and the current status of industrial applications is assessed as a critical milestone for startups. Ultimately, it concludes by addressing contemporary challenges and future prospects, offering insights into the path towards reduced carbon emissions and sustainable development goals.


Subject(s)
Cupriavidus necator , Polyhydroxyalkanoates , Biopolymers , Bacteria , Carbon
2.
Bioresour Technol ; 384: 129280, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37290713

ABSTRACT

Microbial biomanufacturing is a promising approach to produce high-value compounds with low-carbon footprint and significant economic benefits. Among twelve "Top Value-Added Chemicals from Biomass", itaconic acid (IA) stands out as a versatile platform chemical with numerous applications. IA is naturally produced by Aspergillus and Ustilago species through a cascade enzymatic reaction between aconitase (EC 4.2.1.3) and cis-aconitic acid decarboxylase (EC 4.1.1.6). Recently, non-native hosts such as Escherichia coli, Corynebacterium glutamicum, Saccharomyces cerevisiae, and Yarrowia lipolytica have been genetically engineered to produce IA through the introduction of key enzymes. This review provides an up-to-date summary of the progress made in IA bioproduction, from native to engineered hosts, covers in vivo and in vitro approaches, and highlights the prospects of combination tactics. Current challenges and recent endeavors are also addressed to envision comprehensive strategies for renewable IA production in the future towards sustainable development goals (SDGs).


Subject(s)
Aspergillus , Genetic Engineering , Succinates , Saccharomyces cerevisiae , Metabolic Engineering
3.
Enzyme Microb Technol ; 167: 110231, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37003250

ABSTRACT

Itaconic acid (IA) serves as a prominent building block for polyamides as sustainable material. In vivo IA production is facing the competing side reactions, byproducts accumulation, and long cultivation time. Therefore, the utilization of whole-cell biocatalysts to carry out production from citrate is an alternative approach to sidestep the current limitations. In this study, in vitro reaction of IA was obtained 72.44 g/L by using engineered E. coli Lemo21(DE3) harboring the aconitase (Acn, EC 4.2.1.3) and cis-aconitate decarboxylase (CadA, EC 4.1.1.6) which was cultured in glycerol-based minimal medium. IA productivity enhancement was observed after cold-treating the biocatalysts in - 80 °C for 24 h prior to the reaction, reaching 81.6 g/L. On the other hand, a new seeding strategy in Terrific Broth (TB) as a nutritionally rich medium was employed to maintain the biocatalysts stability up to 30 days. Finally, the highest IA titer of 98.17 g/L was attained using L21::7G chassis, that has a pLemo plasmid and integration of GroELS to the chromosome. The high-level of IA production along with the biocatalyst reutilization enables the economic viability toward a sustainable biorefinery.


Subject(s)
Escherichia coli , Succinates , Escherichia coli/genetics , Plasmids , Citric Acid
4.
Enzyme Microb Technol ; 160: 110087, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35797847

ABSTRACT

Renewable chemical productions through carbon-neutral design are widely concerned in recent years. Among all, itaconic acid (IA) is one of the most important building block chemicals from biorefinery. However, IA fermentation by the eukaryotic Aspergillus terreus is time-consuming and less productive. The whole-cell (WC) bioconversion, proposed as an alternative approach by transforming citrate into IA via two key enzymes of aconitase (ACN, EC 4.2.1.3) and cis-aconitate decarboxylase (CAD, EC 4.1.1.6), is attractive. In this study, we screened the best genes from genes library, studied the kinetics parameters of ACN from Corynebacterium glutamicum (Cg) and CAD from Aspergillus terreus (At), thus achieving the maximum IA production. The catalytic activity of CgAcnA was 39-fold of AtCadA, indicating CAD was the rate-determining step. For metal ions effect, copper and ferric ions inhibited 95% and 59% enzyme activity when both enzymes co-worked together. Finally, the engineered Escherichia coli expressing dual genes and cultured in glycerol-included medium reached the highest IA titer of 67 g/L and productivity of 8.375 g/L/h, which demonstrates as a promising renewable process.


Subject(s)
Escherichia coli , Succinates , Aspergillus/genetics , Escherichia coli/genetics , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL
...