Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Microbiol Res ; 282: 127657, 2024 May.
Article in English | MEDLINE | ID: mdl-38422862

ABSTRACT

Halophytes inhabit saline soils, wherein most plants cannot grow, therefore, their ecological value is outstanding. Arbuscular mycorrhizal (AM) fungi can reconstruct microbial communities to assist plants with stress tolerance. However, little information is available on the microbial community assembly of AM fungi in halophytes. A pot experiment was conducted to investigate the effects of AM fungi on rhizosphere bacterial community structure and soil physiochemical characteristics in the halophyte Suaeda salsa at 0, 100, and 400 mM NaCl. The results demonstrated that AM fungi increased soil alkaline phosphatase (ALP) activity at the three NaCl concentrations, and decreased available P, available K, and the activity of soil catalase (CAT) at 100 mM NaCl. AM fungi decreased the Shannon index of the community at 0 and 100 mM NaCl and increased Sobs index at 400 mM NaCl. Regarding the bacterial community structure, AM fungi substantially decreased the abundance of Acidobacteria phylum at 0 and 100 mM NaCl. AM fungi significantly increased the abundance of genus Ramlibacter, an oxyanion-reducing bacteria that can clean out reactive oxygen species (ROS). AM fungi recruited the genera Massilia and Arthrobacter at 0 and 100 mM NaCl, respectively. Some strains in the two genera have been ascribed to plant growth promoting bacteria (PGPB). AM fungi increased the dry weight and promoted halophyte growth at all three NaCl levels. This study supplements the understanding that AM fungi assemble rhizosphere bacterial communities in halophytes.


Subject(s)
Chenopodiaceae , Mycorrhizae , Salt-Tolerant Plants , Sodium Chloride , Fungi , Bacteria/genetics , Soil/chemistry , Soil Microbiology
2.
Ecotoxicol Environ Saf ; 262: 115128, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37315361

ABSTRACT

Rare earth elements (REEs) have been widely used in traditional and high-tech fields, and high doses of REEs are considered a risk to the ecosystem. Although the influence of arbuscular mycorrhizal fungi (AMF) in promoting host resistance to heavy metal (HM) stress has been well documented, the molecular mechanism by which AMF symbiosis enhances plant tolerance to REEs is still unclear. A pot experiment was conducted to investigate the molecular mechanism by which the AMF Claroideoglomus etunicatum promotes maize (Zea mays) seedling tolerance to lanthanum (La) stress (100 mg·kg-1 La). C. etunicatum symbiosis significantly improved maize seedling growth, P and La uptake and photosynthesis. Transcriptome, proteome, and metabolome analyses performed alone and together revealed that differentially expressed genes (DEGs) related to auxin /indole-3-acetic acid (AUX/IAA) and the DEGs and differentially expressed proteins (DEPs) related to ATP-binding cassette (ABC) transporters, natural resistance-associated macrophage proteins (Nramp6), vacuoles and vesicles were upregulated. In contrast, photosynthesis-related DEGs and DEPs were downregulated, and 1-phosphatidyl-1D-myo-inositol 3-phosphate (PI(3)P) was more abundant under C. etunicatum symbiosis. C. etunicatum symbiosis can promote plant growth by increasing P uptake, regulating plant hormone signal transduction, photosynthesis and glycerophospholipid metabolism pathways and enhancing La transport and compartmentalization in vacuoles and vesicles. The results provide new insights into the promotion of plant REE tolerance by AMF symbiosis and the possibility of utilizing AMF-maize interactions in REE phytoremediation and recycling.

3.
Sci Total Environ ; 867: 161503, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36634786

ABSTRACT

Alkaline lakes are a special type of extreme saline-alkali ecosystem, and the dominant plants store a large number of microbial resources with salinity-tolerant or growth-promoting properties in the littoral zones. In this study, high-throughput sequencing technology and molecular ecological networks were used to analyze the bacteria and fungi from different rhizocompartments of three dominant plants along the salinity gradient in the littoral zones of Sunit Alkali Lake. The study found that fungal communities were more tolerant of environmental abiotic stress, and salinity was not the main environmental factor affecting the composition of microbial communities. Mantel test analysis revealed that SOC (soil organic carbon) was the primary environmental factor affecting the rhizosphere bacterial community as well as the rhizosphere endophyte bacteria and fungi, while CO32- (carbonate ions) had a greater impact on the rhizosphere fungal communities. In addition, keystones identified through the associated molecular network play an important role in helping plants resist saline-alkali environments. There were significant differences in the metabolic pathways of microorganisms from different rhizocompartments predicted by the PICRUSt2 database, which may help to understand how microorganisms resist environmental stress. This study is of great importance for understanding the salt environments around alkaline lakes and excavating potential microbial resources.


Subject(s)
Lakes , Microbiota , Carbon , Soil , Soil Microbiology , Plants , Bacteria , Rhizosphere , Fungi , Alkalies
4.
Environ Pollut ; 307: 119559, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35654253

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) and plant rhizosphere microbes reportedly enhance plant tolerance to abiotic stresses and promote plant growth in contaminated soils. The co-contamination of soil by heavy metals (e.g., Cd) and rare earth elements (e.g., La) represents a severe environmental problem. Although the influence of AMF in the phytoremediation of contaminated soils is well documented, the underlying interactive mechanisms between AMF and rhizosphere microbes are still unclear. We conducted a greenhouse pot experiment to evaluate the effects of AMF (Claroideoglomus etunicatum) on maize growth, nutrient and metal uptake, rhizosphere microbial community, and functional genes in soils with separate and combined applications of Cd and La. The purpose of this experiment was to explore the mechanism of AMF affecting plant growth and metal uptake via interactions with rhizosphere microbes. We found that C. etunicatum (i) significantly enhanced plant nutritional level and biomass and decreased metal concentration in the co-contaminated soil; (ii) significantly altered the structure of maize rhizosphere bacterial and fungal communities; (iii) strongly enriched the abundance of carbohydrate metabolism genes, ammonia and nitrate production genes, IAA (indole-3-acetic acid) and ACC deaminase (1-aminocyclopropane-1-carboxylate) genes, and slightly altered the abundance of P-related functional genes; (iv) regulated the abundance of microbial quorum sensing system and metal membrane transporter genes, thereby improving the stability and adaptability of the rhizosphere microbial community. This study provides evidence of AMF improving plant growth and resistance to Cd and La stresses by regulating plant rhizosphere microbial communities and aids our understanding of the underlying mechanisms.


Subject(s)
Metals, Heavy , Microbiota , Mycorrhizae , Soil Pollutants , Biodegradation, Environmental , Cadmium/analysis , Fungi , Metals, Heavy/analysis , Mycorrhizae/metabolism , Plant Roots/metabolism , Plants/metabolism , Rhizosphere , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis , Zea mays/metabolism
5.
Front Microbiol ; 12: 698479, 2021.
Article in English | MEDLINE | ID: mdl-34322109

ABSTRACT

Lake littoral zones can also be regarded as another extremely hypersaline environment due to hypersaline properties of salt lakes. In this study, high-throughput sequencing technique was used to analyze bacteria and fungi from different rhizocompartments (rhizosphere and endosphere) of four dominant plants along the salinity gradient in the littoral zones of Ejinur Salt Lake. The study found that microbial α-diversity did not increase with the decrease of salinity, indicating that salinity was not the main factor on the effect of microbial diversity. Distance-based redundancy analysis and regression analysis were used to further reveal the relationship between microorganisms from different rhizocompartments and plant species and soil physicochemical properties. Bacteria and fungi in the rhizosphere and endosphere were the most significantly affected by SO4 2-, SOC, HCO3 -, and SOC, respectively. Correlation network analysis revealed the potential role of microorganisms in different root compartments on the regulation of salt stress through synergistic and antagonistic interactions. LEfSe analysis further indicated that dominant microbial taxa in different rhizocompartments had a positive response to plants, such as Marinobacter, Palleronia, Arthrobacter, and Penicillium. This study was of great significance and practical value for understanding salt environments around salt lakes to excavate the potential microbial resources.

6.
J Agric Food Chem ; 69(11): 3390-3400, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33703896

ABSTRACT

Land degraded by salinization and alkalization is widely distributed globally and involves a wide range of ecosystem types. However, the knowledge of the indigenous microbial assemblages and their roles in various saline-alkaline soils is limited. This study demonstrated microbial assemblages in various saline-alkaline soils from different regions of Inner Mongolia and revealed the key driving factors to influence microbiome. The correlation network analysis indicates the difference in adaptability of bacterial and fungal communities under stimulation by saline-alkaline stress: fungal community shows higher tolerance, stability, and resilience to various saline-alkaline soils than a bacterial community. The keystone bacteria and fungi that have potential adaptability to various saline-alkaline environments are further identified, and they may confer benefits in restoring saline-alkaline soils by their own effects or assisting plants. For salt-rich soils in different regions, the soluble salt ion components are the major determinant to drive microbial assemblages of different saline-alkaline soils, rather than salinity. Thus, these saline-alkaline soils are clustered into sulfated, chlorinated, and soda-type saline-alkaline soils. Multivariate analysis reveals unique, dominant, and common microbial taxa in three saline-alkaline soils. This result of the conceptual mode indicates that potential roles of unique and dominant microbial taxa on regulating saline-alkaline functions are more vital.


Subject(s)
Microbiota , Soil , China , Salinity , Soil Microbiology
7.
Huan Jing Ke Xue ; 42(4): 2066-2079, 2021 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-33742842

ABSTRACT

Sandy soils are considered as a significant transition phase to desertification. The effective recovery of sandy soils is of great significance to mitigate the desertification process. Some studies have shown that arbuscular mycorrhizal (AM) fungi and biochar improved the sandy soil, but there have been very few studies regarding the combined effects of AM fungi and biochar amendments on sandy soil improvement. Additionally, the roles of the bacterial and fungal community during the process of sandy soil improvement remain unclear. A greenhouse pot experiment with four treatments, including a control (CK, no amendment), single AM fungi-assisted amendment (RI), single biochar amendment (BC), and combined amendment (BC_RI, biochar plus AM fungi), was set up. This study investigated the effects of different amendment methods on the Nitrariasi birica mycorrhizal colonization, biomass, nutrient (N, P, K, Ca, and Mg) content, soil organic carbon, soil nutrient (TN, TP, and TK) content, and soil water-stable aggregate composition. High throughput sequencing technology was used to investigate the roles of the bacterial and fungal communities during the process of sandy soil improvement. Combined with multiple analysis methods, the improvement mechanisms of different amendment methods were explored. The aim was to provide basic data and scientific basics for reasonably and effectively improving sandy soils. The results indicated that a significant mycorrhiza colonization was observed in the inoculation (RI and BC_RI) treatments, but there was no substantial difference in the mycorrhiza colonization with the RI and BC_RI. Compared with the CK, the shoot biomass and shoot element (N, K, Ca, and Mg) contents were significantly increased in the RI, and the shoot element (N, P, K, Ca, and Mg) contents were significantly increased in the BC and BC_RI; compared with the RI and BC, the root biomass and the root element (P, K, Ca, and Mg) contents were significantly increased in the BC_RI. Compared with the CK, the soil organic carbon contents were significantly increased in the BC and BC_RI, the soil TN contents were significantly increased by 152.54%, and the soil TP and TK contents were significantly decreased by 12.5% and 18.8%, respectively. The proportion of soil aggregates with particle sizes of 0.25-0.05 mm was the highest in each treatment, and the large particle size (>0.25 mm) soil aggregate was significantly increased in the BC_RI. Compared with the CK, the Sobs and Shannon indices of the bacterial/fungal community were significantly decreased in the RI and BC_RI. There was a difference in the microbial community compositions and abundance in the various treatments. The results of the RDA and network analysis were as follows:the effects of AM fungi, biochar, and combined amendment on the soil environment and microbial community structure were significant; in the different amendment treatments, the relationship of the microbial molecular ecological network was significantly changed, and the composition of the core species varied; compared with the RI, there was a higher network connection degree and a richer core species composition in the BC and BC_RI; moreover, the essential role of Rhizophagus intraradices was weaken and the core roles of the other microorganisms (especially bacterial species) were enhanced under the combined effects of biochar and AM fungi. The SEM results demonstrated that the application of AM fungi and biochar could directly affect the bacteria/fungi community structure, and further affect the plant growth and soil properties. The differences in the microbial community structure (especially the change in the microbial interaction) were the key driving factors that led to the difference in the soil improvement effectiveness. In summary, the effects of the different amendment methods on the improvement effectiveness of sandy soils varied. The microbial community played key roles in the process of sandy soil improvement, and there were potential advantages and applications in accelerating the ecological restoration of sandy soils under the combined AM fungi and biochar amendment.


Subject(s)
Microbiota , Mycorrhizae , Carbon , Charcoal , Fungi , Sand , Soil , Soil Microbiology
8.
Ecotoxicol Environ Saf ; 212: 111996, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33545409

ABSTRACT

Rhizosphere microbes are essential partners for plant stress tolerance. Recent studies indicate that arbuscular mycorrhizal fungi (AMF) can facilitate the revegetation of soils contaminated by heavy metals though interacting with rhizosphere microbiome. However, it is unclear how AMF affect rhizosphere microbiome to improve the growth of plant under rare earth elements (REEs) stress. AMF (Claroideoglomus etunicatum) was inoculated to maize grown in soils spiked with Lanthanum (0 mg kg-1, La0; 10 mg kg-1, La10; 100 mg kg-1, La100; 500 mg kg-1, La500). Plant biomass, nutrient uptake, REE uptake and rhizosphere bacterial and fungal community were evaluated. The results indicated that La100 and La500 decreased significantly root colonization rates and nutrition uptake (K, P, Ca and Mg content). La500 decreased significantly α-diversity indexes of bacterial and fungal community. AMF enhanced significantly the shoot and root fresh and dry weight of maize in all La treatments (except for the root fresh and dry weight of La0 and La10 treatment). For La100 and La500 treatments, AMF increased significantly nutrition uptake (K, P, Ca and Mg content) in shoot of maize by 27.40-441.77%. For La500 treatment, AMF decreased significantly shoot La concentration by 51.53% in maize, but increased significantly root La concentration by 30.45%. In addition, AMF decreased bacterial and fungal Shannon index in La0 treatment, but increased bacterial Shannon index in La500 treatment. Both AMF and La500 affected significantly the bacterial and fungal community composition, and AMF led to more influence than La. AMF promoted the enrichment of bacteria, including Planomicrobium, Lysobacter, Saccharothrix, Agrococcus, Microbacterium, Streptomyces, Penicillium and other unclassified genus, and fungi (Penicillium) in La500, which showed the function for promoting plant growth and tolerance of heavy metal. The study revealed that AMF can regulate the rhizosphere bacterial and fungal composition and foster certain beneficial microbes to enhance the tolerance of maize under La stress. Phytoremediation assisted by AMF is an attractive approach to ameliorate REEs-contaminated soils.


Subject(s)
Fungi/growth & development , Lanthanum/toxicity , Mycorrhizae/physiology , Rhizosphere , Soil Microbiology , Soil Pollutants/toxicity , Zea mays/drug effects , Bacteria/growth & development , Biodegradation, Environmental , Biomass , Glomeromycota/growth & development , Lanthanum/analysis , Microbiota , Plant Roots/chemistry , Plant Roots/microbiology , Soil/chemistry , Soil Pollutants/analysis , Zea mays/growth & development , Zea mays/microbiology
9.
Microbiol Res ; 245: 126688, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33418397

ABSTRACT

Halophytes can remove large quantities of salts from saline soils, so their importance in ecology has received increasing attention. Preliminary studies have shown that arbuscular mycorrhizal (AM) fungi can improve the salt tolerance of halophytes. However, few studies have focused on the molecular mechanisms and effects of AM fungi in halophytes under different salt conditions. A pot experiment was carried out to investigate the effects of Funneliformis mosseae inoculation on growth, nutrient uptake, ion homeostasis and the expression of salt tolerance-related genes in Suaeda salsa under 0, 100, 200 and 400 mM NaCl. The results showed that F. mosseae promoted the growth of S. salsa and increased the shoot Ca2+ and Mg2+ concentrations under no-salt condition and high-salt condition. In addition, AM fungi increased the K+ concentration and maintained a high K+/Na+ ratio at 400 mM NaCl, while AM fungi decreased the K+ concentration and reduced the K+/Na+ ratio at 0 mM NaCl. AM fungi downregulated the expression of SsNHX1 in shoots and the expression of SsSOS1 in roots at 400 mM NaCl. These effects may decrease the compartmentation of Na+ into leaf vacuoles and restrict Na+ transport from roots to shoots, leading to an increase in root Na+ concentration. AM symbiosis upregulated the expression of SsSOS1 in shoots and downregulated the expression of SsSOS1 and SsNHX1 in roots at 100 mM NaCl. However, regulation of the genes (SsNHX1, SsSOS, SsVHA-B and SsPIP) was not significantly different with AM symbiosis at 0 mM or 200 mM NaCl. The results revealed that AM symbiosis might induce diverse modulation strategies in S. salsa, depending on external Na+ concentrations. These findings suggest that AM fungi may play significant ecological roles in the phytoremediation of salinized ecosystems.


Subject(s)
Chenopodiaceae/microbiology , Homeostasis , Ions/metabolism , Mycorrhizae/genetics , Mycorrhizae/physiology , Salt Tolerance/genetics , Symbiosis , Chenopodiaceae/drug effects , Chenopodiaceae/physiology , Gene Expression , Ions/analysis , Plant Leaves/drug effects , Plant Leaves/microbiology , Plant Roots/microbiology , Salt Tolerance/drug effects , Salt-Tolerant Plants , Sodium/pharmacology
10.
Environ Pollut ; 241: 607-615, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29886381

ABSTRACT

Multiple contaminants can affect plant-microbial remediation processes because of their interactive effects on environmental behaviour, bioavailability and plant growth. Recent studies have suggested that arbuscular mycorrhizal fungi (AMF) can facilitate the revegetation of soils co-contaminated with rare earth elements (REEs) and heavy metals. However, little is known regarding the role of AMF in the interaction of REEs and heavy metals. A pot experiment was conducted to evaluate the effects of Claroideoglomus etunicatum on the biomass, nutrient uptake, metal uptake and translocation of maize grown in soils spiked with Lanthanum (La) and Cadmium (Cd). The results indicated that individual and combined applications of La (100 mg kg-1) and Cd (5 mg kg-1) significantly decreased root colonization rates by 22.0%-35.0%. With AMF inoculation, dual-metal treatment significantly increased maize biomass by 26.2% compared to single-metal treatment. Dual-metal treatment significantly increased N, P and K uptake by 20.1%-76.8% compared to single-metal treatment. Dual-metal treatment significantly decreased shoot La concentration by 52.9% compared to single La treatment, whereas AM symbiosis caused a greater decrease of 87.8%. Dual-metal treatment significantly increased shoot and root Cd concentrations by 65.5% and 58.7% compared to single Cd treatment and the La translocation rate by 142.0% compared to single La treatment, whereas no difference was observed between their corresponding treatments with AMF inoculation. Furthermore, AMF had differential effects on the interaction of La and Cd on metal uptake and translocation under the background concentrations of soil metals. Taken together, these results indicated that AMF significantly affected the interaction between La and Cd, depending on metal types and concentrations in soils. These findings promote a further understanding of the contributions of AMF to the phytoremediation of co-contaminated soil.


Subject(s)
Cadmium/analysis , Lanthanum/analysis , Mycorrhizae/drug effects , Soil Pollutants/toxicity , Zea mays/microbiology , Biodegradation, Environmental , Biomass , Cadmium/toxicity , Glomeromycota , Lanthanum/toxicity , Metals, Heavy/analysis , Mycorrhizae/chemistry , Mycorrhizae/physiology , Plant Development , Plant Roots/drug effects , Seedlings/chemistry , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis , Symbiosis/drug effects , Zea mays/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...