Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 15: 1418474, 2024.
Article in English | MEDLINE | ID: mdl-38966086

ABSTRACT

Objectives: Wilson disease (WD) is a rare autosomal recessive disorder caused by a mutation in the ATP7B gene. Neurological symptoms are one of the most common symptoms of WD. This study aims to construct a model that can predict the occurrence of neurological symptoms by combining clinical multidimensional indicators with machine learning methods. Methods: The study population consisted of WD patients who received treatment at the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine from July 2021 to September 2023 and had a Leipzig score ≥ 4 points. Indicators such as general clinical information, imaging, blood and urine tests, and clinical scale measurements were collected from patients, and machine learning methods were employed to construct a prediction model for neurological symptoms. Additionally, the SHAP method was utilized to analyze clinical information to determine which indicators are associated with neurological symptoms. Results: In this study, 185 patients with WD (of whom 163 had neurological symptoms) were analyzed. It was found that using the eXtreme Gradient Boosting (XGB) to predict achieved good performance, with an MCC value of 0.556, ACC value of 0.929, AUROC value of 0.835, and AUPRC value of 0.975. Brainstem damage, blood creatinine (Cr), age, indirect bilirubin (IBIL), and ceruloplasmin (CP) were the top five important predictors. Meanwhile, the presence of brainstem damage and the higher the values of Cr, Age, and IBIL, the more likely neurological symptoms were to occur, while the lower the CP value, the more likely neurological symptoms were to occur. Conclusions: To sum up, the prediction model constructed using machine learning methods to predict WD cirrhosis has high accuracy. The most important indicators in the prediction model were brainstem damage, Cr, age, IBIL, and CP. It provides assistance for clinical decision-making.

2.
Sci Rep ; 13(1): 20145, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978208

ABSTRACT

Retinal ischemia‒reperfusion (I/R) injury can cause significant damage to human retinal neurons, greatly compromising their functions. Existing interventions have been proven to have little effect. Ferroptosis is a newly discovered type of programmed cell death that has been found to be involved in the process of ischemia‒reperfusion in multiple organs throughout the body. Studies have shown that it is also present in retinal ischemia‒reperfusion injury. A rat model of retinal ischemia‒reperfusion injury was constructed and treated with deferoxamine. In this study, we found the accumulation of Fe2+, reactive oxygen species (ROS), malondialdehyde (MDA), and the consumption of glutathione (GSH) via ELISA testing; increased expression of transferrin; and decreased expression of ferritin, SLC7A11, and GPX4 via Western blotting (WB) and real-time PCR testing. Structural signs of ferroptosis (mitochondrial shrinkage) were observed across multiple cell types, including retinal ganglion cells (RGCs), photoreceptor cells, and pigment epithelial cells. Changes in visual function were detected by F-VEP and ERG. The results showed that iron and oxidative stress were increased in the retinal ischemia‒reperfusion injury model, resulting in ferroptosis and tissue damage. Deferoxamine protects the structural and functional soundness of the retina by inhibiting ferroptosis through the simultaneous inhibition of hemochromatosis, the initiation of transferrin, and the degradation of ferritin and activating the antioxidant capacity of the System Xc-GSH-GPX4 pathway.


Subject(s)
Ferroptosis , Reperfusion Injury , Vision, Low , Humans , Animals , Rats , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Reperfusion , Reperfusion Injury/complications , Reperfusion Injury/drug therapy , Ferritins , Glutathione , Transferrins , Reactive Oxygen Species
3.
Biomed Pharmacother ; 125: 109998, 2020 May.
Article in English | MEDLINE | ID: mdl-32070875

ABSTRACT

Retinal ischemia reperfusion injury (IRI) is a leading cause of visual impairment or blindness, and an effective way to prevent the visual loss needs to be developed. Although decades of clinical application of Huoxue-Tongluo-Lishui-Decoction (HTLD) has demonstrated its reliable clinical efficacy against retinal IRI, no convincing randomized controlled trials were conducted in humans or animals, and the associated mechanism still needs to be explored. To confirm the protective effect of HTLD against retinal IRI and to explore its underlying mechanisms, a standard retinal IRI animal model, randomized controlled trials, objective evaluation and examination methods were adopted in this study. Flash visual evoked potentials (F-VEP) was performed 8 weeks post-reperfusion. The results showed that the medium dose of HTLD had better treatment effects than low dose of HTLD. High dose of HTLD did not further improve visual function relative to medium dose of HTLD, but had poor performance in the latency of P2 wave. The angio-optical coherence tomography (angio-OCT) examination showed that retinal nerve fiber layer (RNFL) became edematous in the early stage, then the edema subsided, and RNFL became thinning in the late stage. HTLD reduced the swelling of RNFL in the early stage and prevented the thinning of RNFL in the late stage. Similar to F-VEP, medium dose of HTLD has the best neural-protective effects against retinal IRI. In mechanisms, HTLD treatment not only enhanced autophagy at 6 h after reperfusion, but extended the enhancing effect until at least 24 h. HTLD treatment significantly reduced the cleaved Caspase-3, cleaved PARP and Caspase-3 activity at 48 h after reperfusion. HTLD inhibited neuro-toxic cytokines expression in retinal IRI by modulating Akt/NF-kB signaling. HTLD treatment enhanced the expressions of L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase (GS), and lower the concentration of free glutamate in retina after reperfusion. The phosphorylation of iNOS increased significantly in retinal IRI at 6 h, and HTLD treatment suppressed the phosphorylation of Inducible nitric oxide synthetase (iNOS). In conclusion, HTLD is visual-protective against retinal IRI, and the regulation of autophagy, apoptosis and neuro-toxic mediators may be the underlying mechanisms. These findings may provide new ideas for the clinical treatment of retinal IRI related diseases.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Evoked Potentials, Visual/drug effects , Reperfusion Injury/drug therapy , Retinal Diseases/drug therapy , Retinal Diseases/physiopathology , Animals , Apoptosis/drug effects , Autophagy/drug effects , Biomarkers , Cytokines/metabolism , Disease Models, Animal , Gene Expression , Glutamic Acid/metabolism , NF-kappa B/metabolism , Neuroprotective Agents/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Reperfusion Injury/diagnosis , Reperfusion Injury/prevention & control , Retinal Diseases/etiology , Retinal Diseases/prevention & control , Signal Transduction/drug effects , Tomography, Optical Coherence
4.
Oncotarget ; 6(6): 4080-96, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25738361

ABSTRACT

Tumor necrosis factor receptor associated factor 4 (TRAF4) is an important adaptor protein that plays a significant role in several signaling pathways. By studying the relationship between TRAF4 and 70 kDa ribosomal protein S6 kinase (p70s6k) in vivo, we demonstrated that cytoplasmic TRAF4 was correlated with the activation of p70s6k in breast cancer. Moreover, we found that cytoplasmic TRAF4 expression in breast cancer patients was significantly associated with a poor prognosis. To determine the exact mechanism, we analyzed the interaction between TRAF4 and p70s6k and identified the Zinc fingers domain of TRAF4 was responsible for their interaction in MCF7 cells. Furthermore, we found that activation of p70s6k/S6 signaling pathway by TRAF4 requires the mammalian target of rapamycin (mTOR) activity; TRAF4 acted as a sensitizer. Tumor necrosis factor receptor associated factor 2 (TRAF2), as a binding partner of TRAF4, could also promoted activation of p70s6k signaling via upregulating cytoplasm expression of TRAF4 and played a critical role in TNFa-induced activation of p70s6k/S6 pathway. Finally, we demonstrated p70s6k/S6 signaling pathway played an important role in the promoting function of TRAF4 on cell proliferation. In summary, our work suggests a new direction for understanding the oncogenic function of TRAF4 in breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , TNF Receptor-Associated Factor 4/metabolism , Breast Neoplasms/pathology , Cell Proliferation/physiology , Cytoplasm/metabolism , Female , Humans , MCF-7 Cells , Signal Transduction
5.
Tumour Biol ; 36(8): 5901-11, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25704480

ABSTRACT

In this study, we examined protein arginine methyltransferase 5 (PRMT5) and tumor necrosis factor receptor-associated 4 (TRAF4) expression in breast cancer to find the interaction mechanism between the two. We examined TRAF4 and PRMT5 expression by immunohistochemistry and found that their expression is positively correlated in breast cancer. Besides, PRMT5 expression was significantly associated with histological type and tumor size (p < 0.05). PRMT5 nuclear expression was significantly associated with HER2 expression (p < 0.05). PRMT5 and TRAF4 were both overexpressed in breast cancer tissues and cells, and we found that PRMT5 binds to the zinc finger structures in TRAF4 by coimmunoprecipitation and Western blotting. We also tested the potential regulatory effect between TRAF4 and PRMT5. TRAF4 upregulated PRMT5 expression, which occurred predominantly in the nucleus, on which TRAF4 promotion of cell proliferation in breast cancer is mainly dependent. PRMT5 may play an important role in activation of the NF-κB signaling pathway.


Subject(s)
Breast Neoplasms/genetics , Protein-Arginine N-Methyltransferases/biosynthesis , TNF Receptor-Associated Factor 4/biosynthesis , Transcriptional Activation , Adult , Aged , Breast Neoplasms/pathology , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Middle Aged , Protein-Arginine N-Methyltransferases/genetics , Signal Transduction/genetics , TNF Receptor-Associated Factor 4/genetics
6.
Oncol Rep ; 31(5): 2085-92, 2014 May.
Article in English | MEDLINE | ID: mdl-24677135

ABSTRACT

TRAF2 promotes cancer cell survival, proliferation and metastasis through the NF-κB pathway by directly interacting with various TNF recepors. However, the molecular mechanism of TRAF2 dysregulation in breast cancer remains to be elucidated. In the present study, miR-502-5p was predicted as a potential regulator of TRAF2. miR-502-5p was significantly downregulated in breast cancer tissues when compared to the level in paired normal breast tissues. The breast cancer cell lines including MCF-7 and MDA-MB-231 expressed a lower level of miR-502-5p when compared to the level in the non-malignant breast epithelial cell line MCF-10A. In vitro, miR-502-5p enhanced early apoptosis and inhibited proliferation of breast cancer cells. Luciferase reporter assay results showed that miR-502-5p could bind to the 3'-untranslated region of the TRAF2 gene, thus, exerting an inhibitory effect on TRAF2. Furthermore, silencing of TRAF2 exhibited effects similar to those of exogenous miR­502-5p, while overexpression of TRAF2 partially abrogated miR-502-5p-mediated suppression in breast cancer cells. In conclusion, miR-502-5p may act as a tumor-suppressor gene by targeting oncogenic TRAF2 in breast cancer and, therefore, may be a potential diagnostic and anticancer therapeutic marker for breast cancer.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , MicroRNAs/genetics , TNF Receptor-Associated Factor 2/genetics , 3' Untranslated Regions/genetics , Apoptosis/genetics , Biomarkers, Tumor/genetics , Breast/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , HEK293 Cells , Humans , MCF-7 Cells , NF-kappa B , Neoplasm Metastasis/genetics , Protein Binding/genetics , RNA Interference , RNA, Small Interfering , TNF Receptor-Associated Factor 2/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...