Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 661: 957-965, 2024 May.
Article in English | MEDLINE | ID: mdl-38330667

ABSTRACT

Constructing in-plane heterojunctions with high interfacial density using two-dimensional materials represents a promising yet challenging avenue for enhancing the hydrogen evolution reaction (HER) in water electrolysis. In this work, we report that three-dimensional porous MoS2-ReS2 in-plane heterojunctions, fabricated via chemical vapor deposition, exhibit robust electrocatalytic activity for the water splitting reaction. The optimized MoS2-ReS2 in-plane heterojunction achieves superior HER performance across a wide pH range, requiring an overpotential of only 200 mV to reach a current density of 10 mA cm-2 in alkaline seawater. Thus, it outperforms standalone MoS2 and ReS2. Furthermore, the catalyst exhibits remarkable stability, enduring up to 200 h in alkaline seawater. Experimental results coupled with density functional theory calculations confirm that electron redistribution at the MoS2-ReS2 heterointerface is likely driven by disparities in in-plane work functions between the two phases. This leads to charge accumulation at the interface, thereby enhancing the adsorptive activity of S atoms toward H* intermediates and facilitating the dissociation of water molecules at the interface. This discovery offers valuable insights into the electrocatalytic mechanisms at the interface and provides a roadmap for designing high-performance, earth-abundant HER electrocatalysts suitable for practical applications.

2.
J Colloid Interface Sci ; 645: 329-337, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37150006

ABSTRACT

Developing highly efficient, low-cost, and stable bifunctional oxygen electrocatalysts is essential for the wide popularization of rechargeable Zn-air batteries. Combining zero-dimensional metal nanoparticles with two-dimensional metal oxide nanosheets is an appealing strategy to balance performance and cost. However, the precise construction of these composites remains a great challenge, and their interaction mechanisms lack thorough study. Herein, a cobalt-oxide-based bifunctional oxygen electrocatalyst comprising a rich Co-CoO heterointerface (CoO/Co@NG) was synthesized via a NaCl sealing-assisted pyrolysis strategy. The NaCl crystals played the role of a closed nanoreactor, which facilitated the formation of a CoO-Co heterojunction. Experimental results and theoretical calculations confirmed that the ingeniously constructed heterojunction expedited the oxygen reduction reaction and oxygen evolution reaction kinetics, which is superior to Pt/C. When serving as the air electrode in an assembled liquid-state Zn-air battery, the battery shows high power density (215 mW cm-2), specific capacity (710 mAh gzn-1), and outstanding durability (720 h at 10 mA cm-2). This work provides an innovative avenue to design high-performance heterojunction electrocatalysts for perdurable Zn-air batteries.

3.
Small ; 18(33): e2203166, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35871547

ABSTRACT

Developing wide temperature range flexible solid-state supercapacitors with high volumetric energy density is highly desirable to meet the demands of the rapidly developing field of miniature consumer electronic devices and promote their widespread adoption. Herein, high-quality dense N-doped 3D porous graphene/carbon nanotube (N-3DG/CNTs) hybrid films are prepared and used as the substrate for the growth of Ni-doped MnO2 (Ni-MnO2 ). The integrated and interconnected architecture endows N-3DG/CNTs@Ni-MnO2 composite electrodes' high conductivity and fast ion/electron transport pathway. Subsequently, 2.4 V solid-state supercapacitors are fabricated based on compacted N-3DG/CNTs@Ni-MnO2 positive electrodes, which exhibit an ultrahigh volumetric energy density of 78.88 mWh cm-3 based on the entire device including electrodes, solid-state electrolyte, and packing films, excellent cycling stability up to 10 000 cycles, and a wide operating temperature range from -20 to 70 °C. This work demonstrates a design of flexible solid-state supercapacitors with exceptional volumetric performance capable of operation under extreme conditions.

4.
Nanoscale ; 11(44): 21479-21486, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31686061

ABSTRACT

Transition metal sulfides have emerged as promising hydrogen evolution reaction (HER) electrocatalysts in acidic media due to high intrinsic activity. They exhibit inferior HER activity in alkaline media, however, owing to the sluggish water dissociation kinetics. Herein, in-plane MoS2/Co9S8 heterostructures are in situ grown on three-dimensional carbon network substrates with interconnected hierarchical pores by one-step pyrolysis to enhance the alkaline HER activity. The experiment results reveal that the HER kinetics of MoS2 is accelerated after the construction of heterostructures. The synthesized MoS2/Co9S8 heterostructures anchored on a three-dimensional interconnected hierarchical pore carbon network exhibit a lower overpotential of 177 mV than MoS2 (252 mV) at 10 mA cm-2 for the HER in 1 M KOH. The enhanced catalytic performance is mainly attributed to the accelerated water dissociation kinetics on the interface of MoS2 and Co9S8. In combination with DFT calculations, it is revealed that assembling the interface construction synergistically favors the chemisorption of protons and the cleavage of the O-H bonds of the H2O molecule, thus accelerating the kinetics of the HER. Moreover, the three-dimensional interconnected hierarchical pore carbon (3DC) network structure is beneficial for the circulation of the electrolyte and H2 spillover. This study demonstrates the present strategy as a facile route for fabricating efficient HER catalysts.

5.
ACS Appl Mater Interfaces ; 10(41): 35145-35153, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30226039

ABSTRACT

As a promising bifunctional electrocatalyst for water splitting, NiFe-layered double hydroxide (NiFe LDH) demonstrates an excellent activity toward oxygen evolution reaction (OER) in alkaline solution. However, its hydrogen evolution reaction (HER) activity is challenged owing to the poor electronic conductivity and insufficient electrochemical active sites. Therefore, a three-dimensional self-supporting metal hydroxide/oxide electrode with abundant oxygen vacancies is prepared by electrodepositing CeO x nanoparticles on NiFe LDH nanosheets. According to the density functional theory calculations and experimental studies, the oxygen vacancies at the NiFe LDH/CeO x interface can be introduced successfully because of the positive charges accumulation resulting from the local electron potential difference between NiFe LDH and CeO x. The oxygen vacancies accelerate the electron/ion migration rates, facilitate the charge transfer, and increase the electrochemical active sites, which give rise to an efficient activity toward HER in alkaline solution. Furthermore, NF@NiFe LDH/CeO x needs a lower potential of 1.51 V to drive a current density of 10 mA cm-2 in overall water splitting and demonstrates a superior performance compared with the benchmark Pt/C and RuO2, which is indicated to be a promising bifunctional electrode catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...