Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 4(4): eaar5909, 2018 04.
Article in English | MEDLINE | ID: mdl-29719865

ABSTRACT

Optimal performance of thermal machines is reached by suppressing friction. Friction in quantum thermodynamics results from fast driving schemes that generate nonadiabatic excitations. The far-from-equilibrium dynamics of quantum devices can be tailored by shortcuts to adiabaticity to suppress quantum friction. We experimentally demonstrate friction-free superadiabatic strokes with a trapped unitary Fermi gas as a working substance and establish the equivalence between the superadiabatic work and its adiabatic value.

2.
Phys Rev Lett ; 120(12): 125301, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29694076

ABSTRACT

We report an observation of a dynamical super Efimovian expansion in a strongly interacting Fermi gas by engineering time dependent external harmonic trap frequencies. When the trap frequency is tailored as [1/4t^{2}+1/t^{2}λlog^{2}(t/t_{*})]^{1/2}, where t_{*} and λ are two controllable parameters, and the change is faster than a critical value, the expansion of such a quantum gas shows novel dynamics that share the same characteristics as the super Efimov effect. A clear double-log periodicity with discrete geometric scaling emerges for the cloud size in the expansion. The universality of such scaling dynamics is verified both in the noninteracting and in the unitarity limit of Fermi gas. Moreover, the measured energy scaling reveals that the potential and internal energy also show double-log periodicity with a π/2 phase difference, but the total energy is monotonically decreased. Observing super Efimovian evolution represents a paradigm in probing universal properties and allows us in a new way to study many-body nonequilibrium dynamics with experiments.

3.
Science ; 353(6297): 371-4, 2016 Jul 22.
Article in English | MEDLINE | ID: mdl-27463669

ABSTRACT

Scale invariance plays an important role in unitary Fermi gases. Discrete scaling symmetry manifests itself in quantum few-body systems such as the Efimov effect. Here, we report on the theoretical prediction and experimental observation of a distinct type of expansion dynamics for scale-invariant quantum gases. When the frequency of the harmonic trap holding the gas decreases continuously as the inverse of time t, the expansion of the cloud size exhibits a sequence of plateaus. The locations of these plateaus obey a discrete geometric scaling law with a controllable scale factor, and the expansion dynamics is governed by a log-periodic function. This marked expansion shares the same scaling law and mathematical description as the Efimov effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...