Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol J ; 17(2): e2100441, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34862729

ABSTRACT

BACKGROUND: Carboxylic acid reductases (CARs) represent useful tools for the production of aldehydes from ubiquitous organic carboxylic acids. However, the low catalytic efficiency of these enzymes hampers their application. METHODS: Herein, a CAR originating from Mycobacterium smegmatis was redesigned through rational hinge engineering to enhance the catalytic efficiency. RESULTS: Based on the unique domain architecture of CARs and their superfamily, a mutagenesis library of the hinge region was designed. The best mutant R505I/N506K showed a 6.57-fold improved catalytic efficiency. Molecular dynamics simulations showed the increased catalytic efficiency was due to the strong binding of the acyl-AMP complex with it. Meanwhile, the ε-nitrogen atom of Lys610 frequently interacted with the ribose-ring oxygen atom of the complex, the distance (d1) between them represents a great indicator for that. The d1 value was used as a nimble indicator to evaluate unexplored mutants of that region for enhanced activity by in silico mutational experiments. Overall, eight mutants were identified to show higher enhanced activity compared with wild-type enzyme and R505F/N506G showed the highest catalytic efficiency. CONCLUSION: Altogether, the two-step strategy used here provided useful references for the engineering of CARs and other similar multiple-domain enzymes.


Subject(s)
Mycobacterium smegmatis , Oxidoreductases , Biocatalysis , Molecular Dynamics Simulation , Mycobacterium smegmatis/enzymology , Mycobacterium smegmatis/genetics , Oxidoreductases/metabolism , Protein Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...