Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 5(1): 100, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35087210

ABSTRACT

Glycosyltransferases typically display acceptor substrate flexibility but more stringent donor specificity. BsGT-1 is a highly effective glycosyltransferase to glycosylate macrolides, including epothilones, promising antitumor compounds. Here, we show that BsGT-1 has three major regions significantly influencing the glycodiversification of epothilone B based on structural molecular docking, "hot spots" alanine scanning, and site saturation mutagenesis. Mutations in the PSPG-like motif region and the C2 loop region are more likely to expand donor preference; mutations of the flexible N3 loop region located at the mouth of the substrate-binding cavity produce novel epothilone oligosaccharides. These "hot spots" also functioned in homologues of BsGT-1. The glycosides showed significantly enhanced water solubility and decreased cytotoxicity, although the glycosyl appendages of epothilone B also reduced drug permeability and attenuated antitumor efficacy. This study laid a foundation for the rational engineering of other GTs to synthesize valuable small molecules.


Subject(s)
Epothilones/metabolism , Glucosyltransferases/metabolism , Amino Acid Motifs , Amino Acid Sequence , Epothilones/chemistry , Gene Expression Regulation, Enzymologic , Hep G2 Cells , Hepatocytes , Humans , Molecular Docking Simulation , Mutation , Protein Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...