Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(15): 7559-7565, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38501607

ABSTRACT

The high-efficiency energy conversion process in organisms is usually carried out by organelles, proteins and membrane systems. Inspired by the cellular aerobic respiration process, we present an artificial electricity generation device, aimed at sustainable and efficient energy conversion using biological components, to demonstrate the feasibility of bio-inspired energy generation for renewable energy solutions. This approach bridges biological mechanisms and technology, offering a pathway to sustainable, biocompatible energy sources. The device features a mitochondria anode and oxygen-carrying red blood cells (RBCs) cathode, alongside a sandwich-structured sulfonated poly(ether ether ketone) and polyimide composite nanochannel for efficient proton transportation, mimicking cellular respiration. Achieving significant performance with 40 wt% RBCs, it produced a current density of 6.42 mA cm-2 and a maximum power density of 1.21 mW cm-2, maintaining over 50% reactivity after 8 days. This research underscores the potential of bio-inspired systems for advancing sustainable energy technologies.


Subject(s)
Bioelectric Energy Sources , Electricity , Ethers , Electrodes , Mitochondria , Erythrocytes
2.
Natl Sci Rev ; 11(3): nwad323, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38312377

ABSTRACT

Tunability of optical performance is one of the key technologies for adaptive optoelectronic applications, such as camouflage clothing, displays, and infrared shielding. High-precision spectral tunability is of great importance for some special applications with on-demand adaptability but remains challenging. Here we demonstrate a galvanostatic control strategy to achieve this goal, relying on the finding of the quantitative correlation between optical properties and electrochemical reactions within materials. An electrochromic electro-optical efficiency index is established to optically fingerprint and precisely identify electrochemical redox reactions in the electrochromic device. Consequently, the charge-transfer process during galvanostatic electrochemical reaction can be quantitatively regulated, permitting precise control over the final optical performance and on-demand adaptability of electrochromic devices as evidenced by an ultralow deviation of <3.0%. These findings not only provide opportunities for future adaptive optoelectronic applications with strict demand on precise spectral tunability but also will promote in situ quantitative research in a wide range of spectroelectrochemistry, electrochemical energy storage, electrocatalysis, and material chemistry.

3.
Small ; : e2308305, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38059736

ABSTRACT

Li+ insertion-induced structure transformation in crystalline electrodes vitally influence the energy density and cycle life of secondary lithium-ion battery. However, the influence mechanism of structure transformation-induced Li+ migration on the electrochemical performance of micro-crystal materials is still unclear and the strategy to profit from such structure transformation remains exploited. Here, an interesting self-optimization of structure evolution during electrochemical cycling in Nb2 O5 micro-crystal with rich domain boundaries is demonstrated, which greatly improves the charge transfer property and mechanical strength. The lattice rearrangement activates the Li+ diffusion kinetics and hinders the particle crack, thus enabling a nearly zero-degeneration operation after 8000 cycles. Full cell paired with lithium cobalt oxides displays an exceptionally high capacity of 176 mA h g-1 at 8000 mA g-1 and excellent long-term durability at 6000 mA g-1 with 63% capacity retention over 2000 cycles. Interestingly, a unique fingerprint based on the intensity ratio of two X-ray diffraction peaks is successfully extracted as a measure of Nb2 O5 electrochemical performance. The structure self-optimization for fast charge transfer and high mechanical strength exemplifies a new battery electrode design concept and opens up a vast space of strategy to develop high-performance lithium-ion batteries with high energy density and ultra-long cycle life.

4.
ACS Appl Mater Interfaces ; 15(12): 15646-15656, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36926798

ABSTRACT

Multicolor display has gradually become a sought-after trend for electrochromic devices due to its broadened application scope. Meanwhile, the advantages of inorganic electrochromic devices such as stable electrochemical performance and good energy storage ability also have great attraction in practical production applications. However, there are still huge challenges for inorganic electrochromic materials to achieve multicolor transformation due to their single-color hue change. Herein, we design an inorganic and multicolor electrochromic energy storage device (MEESD) exhibiting flexibility and all-solid-state merits. Prussian blue (PB) and MnO2, as the asymmetrical electrodes of this MEESD, show good pseudocapacitance property, matching charge capacity, and obvious color change. As a typical electrochromic device, the MEESD shows a fast response of 0.5 s and good coloration efficiency of 144.2 cm2/C. As an energy storage device, the MEESD presents excellent rate capability and volumetric energy/power density (84.2 mWh cm-3/23.3 W cm-3). Its energy level can be visually monitored by color contrast and optical modulation. In the charging/discharging process, its color can obviously change to various degrees of yellow, green, and blue along with 40% wide optical modulation at 710 nm. Meanwhile, the stability of the MEESD in a common and humidity environment was analyzed in detail from electrochemical, optical, and energy storage aspects. This work provides feasible thoughts to design multifunctional electrochromic devices integrated with inorganic, flexible, all-solid-state, multicolor, and energy storage properties.

5.
Nanomaterials (Basel) ; 13(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36770406

ABSTRACT

Sodium-ion batteries (SIBs) are essential for large-scale energy storage attributed to the high abundance of sodium. Polyanion Na3V2(PO4)3 (NVP) is a dominant cathode candidate for SIBs because of its high-voltage and sodium superionic conductor (NASICON) framework. However, the electrochemical performance of NVP is hindered by the inherently poor electronic conductivity, especially for extreme fast charging and long-duration cycling. Herein, we develop a facile one-step in-situ polycondensation method to synthesize the three-dimensional (3D) Na3V2(PO4)3/holey-carbon frameworks (NVP@C) by using melamine as carbon source. In this architecture, NVP crystals intergrown with the 3D holey-carbon frameworks provide rapid transport pathways for ion/electron transmission to increase the ultrahigh rate ability and cycle capability. Consequently, the NVP@C cathode possesses a high reversible capacity of 113.9 mAh g-1 at 100 mA g-1 and delivers an outstanding high-rate capability of 75.3 mAh g-1 at 6000 mA g-1. Moreover, it shows that the NVP@C cathode is able to display a volumetric energy density of 54 Wh L-1 at 6000 mA g-1 (31 Wh L-1 for NVP bulk), as well as excellent cycling performance of 65.4 mAh g-1 after 1000 cycles at 2000 mA g-1. Furthermore, the NVP@C exhibits remarkable reversible capabilities of 81.9 mAh g-1 at a current density of 100 mA g-1 and 60.2 mAh g-1 at 1000 mA g-1 even at a low temperature of -15 °C. The structure of porous carbon frameworks combined with single crystal materials by in-situ polycondensation offers general guidelines for the design of sodium, lithium and potassium energy storage materials.

6.
ACS Appl Mater Interfaces ; 14(43): 48833-48843, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36269142

ABSTRACT

Flexible electrochromic devices have attracted considerable attention in recent years due to their great potential in smart multifunction electrochromic energy storage devices and wearable intelligent electronics. Herein, we present an inorganic flexible Li-based electrochromic energy storage device (EESD) by combining a Prussian white@MnO2-composited electrode (PWM) and sputtering-made WO3 electrode. The synergistic effect of Prussian white and MnO2 plays a positive role both in energy storage and electrochromic property of the EESD. Its energy level can be quantified by the transmittance spectrum and chrominance difference, and its charging-discharging process can be monitored in real time by optical modulation at special wavelength. Specifically, the EESD can endure a 10,000 times cyclic voltammetry cycle without obvious degradation at wide voltage windows (-2 to 2.5 V) and realize a high coloration efficiency (77.6 cm2/C) with 35% optical modulation at 510 nm. In terms of energy storage performance, the EESD demonstrates excellent volumetric energy/power density (1.25 W cm-3/13.2 mWh cm-3) and remarkable stability with close to 98.3% capacitance retention and 99.4% coulombic efficiency after more than 4000 cycles. Its charging and discharging degree can be visualized in different spectral regions. There are 40% transmittance change for charging in the blue light region (450-480 nm) and 45% transmittance change for discharging in the red light region (620-750 nm). Based on its multicolor property, a quantitative indicator of charge state is achieved by the linear dependence of real-time chrominance change as stored or released charge. The ∼11 mC/cm2 stored charge capacity can cause an ∼11 increase in chrominance difference ΔE value, while ∼7 mC/cm2 discharge capacity can cause a ΔE value increase of ∼4. This work provides an efficient strategy to develop portable multicolor-integrated EESDs toward high performance and long stability.

7.
Small ; 18(35): e2203104, 2022 09.
Article in English | MEDLINE | ID: mdl-35931455

ABSTRACT

Smart modulation of bioelectric signals is of great significance for the development of brain-computer interfaces, bio-computers, and other technologies. The regulation and transmission of bioelectrical signals are realized through the synergistic action of various ion channels in organisms. The bionic nanochannels, which have similar physiological working environment and ion rectification as their biological counterparts, can be used to construct ion rectifier bridges to modulate the bioelectric signals. Here, the artificial smart ionic rectifier bridge with light response is constructed by anodic aluminum oxide (AAO)/poly (spiropyran acrylate) (PSP) nanochannels. The output ion current of the rectifier bridge can be switched between "ON" and "OFF" states by irradiation with UV and visible (Vis) light, and the conversion efficiency (η) of the system in "ON" state is ≈70.5%. The controllable modulation of brain wave-like signal can be realized by ionic rectifier bridge. The ion transport properties and processes of ion rectifier bridges are explained using theoretical calculations based on Poisson-Nernst-Planck (PNP) equations. These findings have significant implications for the understanding of the intelligent ionic circuit and combination of artificial smart ionic channels to organisms, which provide new avenues for development of intelligent ion devices.


Subject(s)
Brain Waves , Ion Channels , Ion Transport , Ions , Light
8.
Waste Manag ; 147: 1-9, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35594746

ABSTRACT

Ni-modified ZSM-5 catalysts are prepared by a one-pot hydrothermal synthesis method and applied to the steam reforming of naphthalene as a tar model compound. The effects of the reaction temperature, silica-alumina ratio (Si/Al) and metal content on the catalytic performance for reforming naphthalene are investigated. Characterization results indicate that the Ni-modified ZSM-5 catalysts maintain the original MFI structure of ZSM-5 and a portion of Ni is successfully introduced into the zeolite structure. When the reaction temperature is 800 °C, the conversion efficiency of naphthalene achieves 91.5% with a high yield (6.75%) of hydrogen. Zeolite catalysts with higher Si/Al ratios improve the conversion of naphthalene to syngas, demonstrating their better catalytic activity. An appropriate active metal content (2.4 wt%) contributes to the catalytic performance of the catalyst owing to the strong metal-support interaction, resulting in resistance to sintering and carbon deposition. The reaction mechanism involved in the catalytic reforming of naphthalene is proposed. The application of a novel one-pot hydrothermal synthesis method greatly promoted the catalytic activity of Ni@ZSM-5, which provided an appropriate and universal approach for the improvement and optimization of tar reforming catalysts.

9.
ACS Appl Mater Interfaces ; 14(8): 10517-10525, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35188734

ABSTRACT

Electrochromic devices with unique advantages of electrical/optical bistability are highly desired for energy-saving and information storage applications. Here, we put forward a self-driven Al-ion electrochromic system, which utilizes WOx films, Cu foil, and graphite rod as electrochromic optical modulation and graph display electrodes, coloration potential supplying electrodes, and bleaching potential supplying electrodes, respectively. The inactive Cu electrode can not only realize the effective Al3+ cation intercalation into electrochromic WOx electrodes but also eliminate the problem of metal anode consumption. The electrochromic WOx electrodes cycled in Al3+ aqueous media exhibit a wide potential window (∼1.5 V), high coloration efficiency (36.0 cm2/C), and super-long-term cycle stability (>2000 cycles). The dynamic optical modulation and static graph display function can be achieved independently only by switching the electrode connection mode, thus bringing more features to this electrochromic system. For a large-area electrochromic system (10 × 10 cm2), the absolute transmittance value in its color-neutral state can reach about 41% (27%) at 633 nm (780 nm) by connecting the Cu and WOx electrodes for 140 s. The original transparent state can be readily recovered by replacing the Cu foil with the graphite rod. This work throws light on next-generation electrochromic applications for optical/thermal modulation, privacy protection, and information display.

10.
Phys Chem Chem Phys ; 23(26): 14126-14145, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34164640

ABSTRACT

The current intelligent automation society faces increasingly severe challenges in achieving efficient storage and utilization of energy. In the field of energy applications, various energy technologies need to be more intelligent and efficient to produce, store, transform and save energy. In addition, many smart electronic devices facing the future also require newer, lighter, thinner and even transparent multi-functional power supplies. The unique properties of electrochromic energy storage devices (ECESDs) have attracted widespread attention. In the field of energy applications, they have high potential value and competitiveness. This review focuses on the electrochromic basic principles, and the latest technological examples of ECESDs, which are related to materials and device structures. Simultaneously, this review makes a detailed comparison and summary of example performances. Moreover, the review compares the current mainstream energy storage devices: lithium batteries and supercapacitors, and the main challenges of ECESDs are discussed. Finally, the future development directions in the field of electrochromic energy storage are predicted.

11.
J Phys Chem Lett ; 12(23): 5587-5592, 2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34109791

ABSTRACT

The confinement effect of biological ion channels regulates the transport of molecules and ions due to angstrom-sized pores. The structure of the potassium channel has a selection region (3-4 Å), a cavity (10 Å), and a gated region, while ZIF-8 has intrinsic pores with a 3.4 Å aperture and an 11.6 Å cavity similar to those of the potassium channel. Inspired by this, we constructed the glass/ZIF-8 hybrid membrane through an electrochemical growth process to explore the kinetics of the ion transmembrane by I-V curves and electrochemical impedance spectroscopy. These complementary approaches yield highly correlated results that show that ion transportation of the ZIF-8 membrane follows Arrhenius behavior. The rates of ions are controlled by the transmembrane activation energy, in which the ionic charge and radius play an important role.


Subject(s)
Imidazoles/pharmacokinetics , Metal-Organic Frameworks/pharmacokinetics , Metals, Alkaline Earth/pharmacokinetics , Nanotechnology/methods , Potassium Channels/pharmacokinetics , Imidazoles/chemistry , Ion Channels/chemistry , Ion Channels/pharmacokinetics , Ion Transport/physiology , Kinetics , Metal-Organic Frameworks/chemistry , Metals, Alkaline Earth/chemistry , Potassium Channels/chemistry
12.
ACS Appl Mater Interfaces ; 13(9): 11067-11077, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33645966

ABSTRACT

With large interstitial space volumes and fast ion diffusion pathways, amorphous metal oxides as cathodic intercalation materials for electrochromic devices have attracted attention. However, these incompact thin films normally suffer from two inevitable imperfections: self-deintercalation of guest ions and poor stability of the structure, which constitute a big obstacle toward the development of high-stable commercial applications. Here, we present a low-cost, eco-friendly hybrid cation 1,2-PG-AlCl3·6H2O electrolyte, in which the sputter-deposited a-WO3-x thin film can exhibit both the long-desired excellent open-circuit memory (>100 h, with zero optical loss) and super-long cycling lifetime (∼20,000 cycles, with 80% optical modulation), benefiting from the formation of unique Al-hydroxide-based solid electrolyte interphase during electrochromic operations. In addition, the optical absorption behaviors in a-WO3-x caused by host-guest interactions were elaborated. We demonstrated that the intervalence transfers are primarily via the "corner-sharing" related path (W5+ ↔ W6+) but not the "edge-sharing" related paths (W4+ ↔ W6+ and/or W4+ ↔ W5+), and the small polaron/electron transfers taking place at the W-O bond-breaking positions are not allowed. Our findings might provide in-depth insights into the nature of electrochromism and provide a significant step in the realization of more stable, more excellent electrochromic applications based on amorphous metal oxides.

13.
Sci Total Environ ; 721: 137671, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32172106

ABSTRACT

In this study, the reforming of toluene, as a surrogate for tar, was investigated in plasma-alone (PA) and plasma-catalytic (PC) systems. The effects of feed gas oxygen content (O2/(O2 + N2) = 0, 3, 12, 21, or 30 vol%) and the discharge power (30, 75, or 90 W) on toluene conversion, the selectivity of syngas (H2 + CO), and undesirable liquid by-products were evaluated using the PA system. A maximum toluene conversion of 87.9% and a minimum selectivity of undesirable liquid by-products of 0.53% for ethylbenzene, and 1.24% for benzene, were obtained when the discharge power was 90 W and the oxygen content in the carrier gas was 3 vol%. However, a maximum gas selectivity of 48.4% for H2 and 19.4% for CO was attained when the discharge power was 75 W and the oxygen content was 3 vol% and 12 vol%, respectively. The effect of the steam/carbon molar ratio (S/C) on toluene reforming was investigated using the PC system with Ni/ZSM-5 catalyst under a discharge power of 75 W. The addition of steam to the feed gas significantly enhanced the conversion of toluene to syngas. A maximum toluene conversion of 88.5% was reached with a minimum selectivity of liquid by-products (1.9% for ethylbenzene and 5.2% for benzene) when S/C was 2. However, the highest selectivity of syngas (69.8% for H2 and 21.2% for CO) was achieved when S/C was 2.5. The catalyst employed in the plasma reforming of toluene exhibited excellent anti-carbon deposition performance. A possible reaction mechanism and pathway of toluene destruction was proposed based on analysis of both gaseous and liquid products.

14.
Nanoscale ; 11(46): 22531-22538, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31746898

ABSTRACT

Floating-base bipolar transistors are widely used semiconductor devices because they could both amplify signal current and suppress noise. Employing two-dimensional (2D) materials of ultrahigh photoelectric properties could further improve the device performance. Due to the difficulty in doping, homojunctions are usually not realizable for many 2D materials. Instead, a heterojunction of various 2D materials of different Fermi levels is usually needed. However, the material interface of a heterojunction deteriorates device performance and makes the fabrication process difficult. Here, the doping difficulties have been solved by utilizing a solid ionic dielectric material (LiTaO3) and a floating-base bipolar transistor based on a 2D material (monolayer MoS2 here) homojunction is realized. The transistor shows tunable ambipolar transport characteristics. Particularly, under illumination, the amplification coefficient of a phototransistor can be optimized by changing the gate voltage. The optimized photoresponsivity of the device could reach up to 7.9 A W-1 with an ultrahigh detectivity of 3.39 × 1011 Jones. The overall fabrication processing is compatible to conventional processing. This design can effectively extend the application of 2D materials.

15.
J Hazard Mater ; 366: 538-544, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30572293

ABSTRACT

Novel bimetallic catalysts supported on activated carbon (AC) with high metal loadings were synthesized by carbonizing an ion-exchange resin. AC-supported Ni-Cu (Ni-Cu/C) and Ni-Zn (Ni-Zn/C) bimetallic catalysts with different Ni:Cu(Zn) ratios were used to decompose Aroclor 1254, which is a commonly used commercial mixture of polychlorinated biphenyls. Characterization with scanning electron microscopy and energydispersive X-ray spectroscopy showed that the metals were uniformly distributed on the surfaces and inside the catalysts. After 30 min reaction over the Ni-Cu/C catalyst at a low temperature of 250 °C, the efficiencies of Hexa-CBs decomposition present in Aroclor 1254 exceeded 97%, which were higher than those achieved over Ni-Zn/C. These efficiencies increased with Cu content in Ni-Cu/C, and decreased with the amount of Zn in Ni-Zn/C. X-ray photoelectron spectra and X-ray absorption near-edge structure spectra of Ni-Cu/C and Ni-Zn/C before and after the reaction indicated that Ni and Cu were oxidized during the reaction. However, Zn showed no significant change, suggesting that Ni and Cu are the active components to promote reaction with Aroclor 1254, whereas Zn is only a spectator. The efficiencies of Aroclor 1254 decomposition over bimetallic catalysts were greater than those over monometallic catalysts, which was confirmed by density functional theory calculations.

16.
Adv Sci (Weinh) ; 5(9): 1800163, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30250783

ABSTRACT

Biomimetic solid-state nanofluidic diodes have attracted extensive research interest due to the possible applications in various fields, such as biosensing, energy conversion, and nanofluidic circuits. However, contributions of exterior surface to the transmembrane ionic transport are often ignored, which can be a crucial factor for ion rectification behavior. Herein, a rational design of robust sandwich-structured nanofluidic diode is shown by creating opposite charges on the exterior surfaces of a nanoporous membrane using inorganic oxides with distinct isoelectric points. Potential-induced changes in ion concentration within the nanopores lead to a current rectification; the results are subsequently supported by a theoretical simulation. Except for providing surface charges, functional inorganic oxides used in this work are complementary electrochromic materials. Hence, the sandwich-structured nanofluidic diode is further developed into an electrochromic membrane exhibiting a visual color change in response to redox potentials. The results show that the surface-charge-governed ionic transport and the nanoporous structure facilitate the migration of Li+ ions, which in turn enhance the electrochromic performance. It is envisioned that this work will create new avenues to design and optimize nanofluidic diodes and electrochromic devices.

17.
Inorg Chem ; 57(15): 8874-8880, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30047734

ABSTRACT

NiO x is recognized as the leading candidate for smart window anodes that can dynamically modulate optical absorption, thereby achieving energy efficiency in construction buildings. However, the electrochromic mechanism in NiO x is not yet clear, and the ionic species involved are sometimes ambiguous, particularly in aprotic electrolytes. We demonstrate herein that the "net coloration effect" originates from newly generated high-valence Ni3+/Ni4+ ions during anion-dependent anodization, and the Li+ intercalation/deintercalation only plays a role in modulating the oxidation state of Ni. Unambiguous evidences  proving the occurrence of anodization reaction were obtained by both chronoamperometry and cyclic voltammetry. Benefiting from the irreversible polarization of Ni2+ to Ni3+/Ni4+, the quantity of voltammetric charge increases by ∼38% under the same test conditions, enhancing the corresponding electrochromic modulation by ∼8%. Strong linkages between the coloration, evolution, and degradation observed in this work provide in-depth insights into the electrocatalytic and electrochromic mechanisms.

18.
Nanoscale ; 10(35): 16521-16530, 2018 Sep 13.
Article in English | MEDLINE | ID: mdl-29931009

ABSTRACT

The visualization of the microstructure change and of the depth of lithium transport inside a monolithic ElectroChromic Device (ECD) is realized using an innovative combined approach of Focused Ion Beam (FIB), Secondary Ion Mass Spectrometry (SIMS) and Glow Discharge Optical Emission Spectroscopy (GDOES). The electrochemical and optical properties of the all-thin-film inorganic ECD glass/ITO/WO3/LiTaO3/NiO/ITO, deposited by magnetron sputtering, are measured by cycling voltammetry and in situ transmittance analysis up to 11 270 cycles. A significant degradation corresponding to a decrease in the capacity of 71% after 2500 cycles and of 94% after 11 270 cycles is reported. The depth resolved microstructure evolution within the device, investigated by cross-sectional cutting with FIB, points out a progressive densification of the NiO layer upon cycling. The existence of irreversible Li ion trapping in NiO is illustrated through the comparison of the compositional distribution of the device after various cycles 0, 100, 1000, 5000 and 11 270. SIMS and GDOES depth profiles confirm an increase in the trapped Li content in NiO as the number of cycles increases. Therefore, the combination of lithium trapping and apparent morphological densification evolution in NiO is believed to account for the degradation of the ECD properties upon long term cycling of the ECD.

19.
Adv Mater ; 30(4)2018 Jan.
Article in English | MEDLINE | ID: mdl-29215141

ABSTRACT

Many ion channels in the cell membrane are believed to function as gates that control the water and ion flow through the transitions between an inherent hydrophobic state and a stimuli-induced hydration state. The construction of nanofluidic gating systems with high gating efficiency and reversibility is inspired by this hydrophobic gating behavior. A kind of electrically actuated nanochannel is developed by integrating a polypyrrole (PPy) micro/nanoporous film doped with perfluorooctanesulfonate ions onto an anodic aluminum oxide nanoporous membrane. Stemming from the reversible wettability switch of the doped PPy film in response to the applied redox potentials, the nanochannels exhibit highly efficient and reversible gating behaviors. The optimized gating ratio is over 105 , which is an ultrahigh value when compared with that of the existing reversibly gated nanochannels with comparable pore diameters. Furthermore, the gating behavior of the electrically actuated nanochannels shows excellent repeatability and stability. Based on this highly efficient and reversible gating function, the electrically actuated nanochannels are further applied for drug delivery, which achieves the pulsatile release of two water-soluble drug models. The electrically actuated nanochannels may find potential applications in accurate and on-demand drug therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...