Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 278: 126481, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38968655

ABSTRACT

Quantitative microRNA (miRNA) detection is crucial for early breast cancer diagnosis and prognosis. However, quick and stable fluorescence sensing for miRNA identification is still challenging. This work developed a novel label-free detection method based on AuNPs etching for quantitatively detecting miRNA-155. A layer of AuNPs was grown on the surface of mesoporous silica nanoparticles (MSN) loaded with Rhodamine 6G (R6G) using seed-mediated growth, followed by probe attachment. In the presence of miRNA-155, the MSN@R6G@AuNP surface loses the protection of the attached probe, rendering AuNPs susceptible to etching by hydrochloric acid. This results in a significant fluorescent signal being released in the free space. The encapsulation with AuNPs effectively reduces signal leakage, while the rapid etching process shortens detection time. This strategy enables sensitive and fast detection with a detection range of 100 fM to 100 nM, a detection limit of 2.18 fM, and a detection time of 30 min. The recovery rate in normal human serum ranges from 99.02 % to 106.34 %. This work presents a simple biosensing strategy with significant potential for application in tumor diagnosis.

2.
Anal Chem ; 96(26): 10577-10585, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38887964

ABSTRACT

Simultaneous detection of multiple breast cancer-associated miRNAs significantly raises the accuracy and reliability of early diagnosis. In this work, disposable carbon fiber paper serves as the biosensing interface, linking DNA probes via click chemistry to efficiently capture targets and signals efficiently. DNA probes have multiple recognition domains that trigger a cascade reaction through the helper probes and targets, resulting in two signals output. The signals are centrally encapsulated in the pore of the MIL-88(Fe)-NH2. The signal carriers are directed by signal probes to the recognition domains that correspond to the DNA probes. The biosensor is selective and stable, and it can quantify miRNA-21 and miRNA-155 simultaneously with detection limits of 0.64 and 0.54 fmol/L, respectively. Furthermore, it demonstrates satisfactory performance in tests conducted with normal human serum and cell lysate. Overall, this method makes a satisfactory exploration to realize an inexpensive and sensitive biosensor for multiple biomarkers.


Subject(s)
Biosensing Techniques , Click Chemistry , MicroRNAs , Biosensing Techniques/methods , Humans , MicroRNAs/analysis , MicroRNAs/blood , DNA Probes/chemistry , Breast Neoplasms/diagnosis , Limit of Detection
3.
Environ Sci Pollut Res Int ; 27(28): 35871, 2020 10.
Article in English | MEDLINE | ID: mdl-32691310

ABSTRACT

The correct University name of the 2nd affiliation is presented in this paper.

5.
Environ Sci Pollut Res Int ; 26(1): 114-125, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30382516

ABSTRACT

Potentially toxic metal contamination exerts a significant impact on soil microbes, thus deteriorating soil quality. The seasonality also has effects in shaping soil microbial community. The soil microbial community is a crucial factor representing soil health. However, whether the influence of potentially toxic metals on the microbial community differs in different seasons are still unknown. In this study, we established nine mesocosms of three cadmium treatments to investigate the impact of Cd amendments on the bacterial community of croplands in winter and summer. High bacterial diversity was revealed from the soil samples with 31 phyla. In winter, the abundance of dominant phylum Bacteroidetes, Gemmatimonadetes, and Verrucomicrobia increased, but Firmicutes decreased in Cd-contaminated soil in winter. Meanwhile, the abundance of Actinobacteria, Planctomycetes, and Chloroflexi showed Cd dose-dependent pattern in winter. In summer, the phylum Gemmatimonadetes and Verrucomicrobia decreased along with Cd dosing, while the dose-effect of Cd was found on the abundance of Actinobacteria and Chloroflexi. At the genus level, 55 genera of bacteria were significantly affected by Cd stress in winter, 24 genera decreased, 11 genera increased along with Cd gradients, and 20 genera changed depending on Cd dosage. In particular, genera Lactococcus, Psychrobacter, Brochothrix, Enhydrobacter, and Carnobacterium disappeared in Cd treatments, suggesting high sensitivity to Cd stress in winter. In summer, one genus decreased, seven genera increased with Cd dosing, and three genera were dose-dependent. The contrasting effects of Cd on soil bacterial community could be due to different edaphic factors in winter (moisture, available phosphorus, and total Cd) and summer (available Cd). Collectively, the winter-induced multiple stressors increase the impact of Cd on bacterial community in cropland. In further studies, the seasonal factor should be taken into consideration during the sampling stage.


Subject(s)
Bacteria/drug effects , Cadmium/toxicity , Crops, Agricultural , Microbiota/drug effects , Seasons , Soil Microbiology , Soil Pollutants/toxicity , Actinobacteria , Bacteria/genetics , Bacteroidetes , Chloroflexi , Environmental Pollution , RNA, Ribosomal, 16S , Soil
6.
Can J Microbiol ; 64(5): 305-316, 2018 May.
Article in English | MEDLINE | ID: mdl-29401407

ABSTRACT

Heavy metal pollution has become a widespread environmental problem due to rapid economic development. The phylogenetic diversity and structure of microbial communities in lead (Pb)-contaminated Lou soils were investigated using Illumina MiSeq sequencing of 16S rRNA genes. The presence of Pb2+ in soil showed weak impact on the diversity of soil bacteria community, but it influenced the abundance of some genera of bacteria, as well as soil physicochemical properties. We found significant differences in the relative abundances of heavy-metal-resistant bacteria such as Bacillus, Streptococcus, and Arthrobacter at the genus level. Available Pb and total Pb negatively correlated with soil organic matter but positively affected available phosphorus. The abundance of main bacteria phyla was highly correlated with total Pb. The relative abundance of Gemmatimonadetes, Nitrospirae, and Planctomycetes was negatively correlated with total Pb. Collectively, Pb influences both the microbial community composition and physicochemical properties of soil.


Subject(s)
Lead/pharmacology , Microbiota/genetics , Soil Microbiology , Soil Pollutants/pharmacology , Agriculture , Bacteria/genetics , Biodiversity , Environmental Pollution , Lead/analysis , Molecular Typing , Phylogeny , RNA, Ribosomal, 16S/genetics , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...