Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
N Engl J Med ; 388(6): 518-528, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36780676

ABSTRACT

BACKGROUND: The efficacy of a single dose of pegylated interferon lambda in preventing clinical events among outpatients with acute symptomatic coronavirus disease 2019 (Covid-19) is unclear. METHODS: We conducted a randomized, controlled, adaptive platform trial involving predominantly vaccinated adults with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Brazil and Canada. Outpatients who presented with an acute clinical condition consistent with Covid-19 within 7 days after the onset of symptoms received either pegylated interferon lambda (single subcutaneous injection, 180 µg) or placebo (single injection or oral). The primary composite outcome was hospitalization (or transfer to a tertiary hospital) or an emergency department visit (observation for >6 hours) due to Covid-19 within 28 days after randomization. RESULTS: A total of 933 patients were assigned to receive pegylated interferon lambda (2 were subsequently excluded owing to protocol deviations) and 1018 were assigned to receive placebo. Overall, 83% of the patients had been vaccinated, and during the trial, multiple SARS-CoV-2 variants had emerged. A total of 25 of 931 patients (2.7%) in the interferon group had a primary-outcome event, as compared with 57 of 1018 (5.6%) in the placebo group, a difference of 51% (relative risk, 0.49; 95% Bayesian credible interval, 0.30 to 0.76; posterior probability of superiority to placebo, >99.9%). Results were generally consistent in analyses of secondary outcomes, including time to hospitalization for Covid-19 (hazard ratio, 0.57; 95% Bayesian credible interval, 0.33 to 0.95) and Covid-19-related hospitalization or death (hazard ratio, 0.59; 95% Bayesian credible interval, 0.35 to 0.97). The effects were consistent across dominant variants and independent of vaccination status. Among patients with a high viral load at baseline, those who received pegylated interferon lambda had lower viral loads by day 7 than those who received placebo. The incidence of adverse events was similar in the two groups. CONCLUSIONS: Among predominantly vaccinated outpatients with Covid-19, the incidence of hospitalization or an emergency department visit (observation for >6 hours) was significantly lower among those who received a single dose of pegylated interferon lambda than among those who received placebo. (Funded by FastGrants and others; TOGETHER ClinicalTrials.gov number, NCT04727424.).


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Interferon Lambda , Adult , Humans , Bayes Theorem , COVID-19/therapy , Double-Blind Method , Interferon Lambda/administration & dosage , Interferon Lambda/adverse effects , Interferon Lambda/therapeutic use , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/adverse effects , Polyethylene Glycols/therapeutic use , SARS-CoV-2 , Treatment Outcome , Ambulatory Care , Injections, Subcutaneous , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , COVID-19 Vaccines/therapeutic use , Vaccination
2.
Eur J Immunol ; 46(1): 204-11, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26449770

ABSTRACT

Gout manifests as recurrent episodes of acute joint inflammation and pain due to the deposition of monosodium urate (MSU) crystals within the affected tissue in a process dependent on NLRP3 inflammasome activation. The synthesis, activation, and release of IL-1ß are crucial for MSU-induced inflammation. The current study evaluated the mechanism by which TNF-α contributed to MSU-induced inflammation. Male C57BL/6J or transgenic mice were used in this study and inflammation was induced by the injection of MSU crystals into the joint. TNF-α was markedly increased in the joint after the injection of MSU. There was inhibition in the infiltration of neutrophils, production of CXCL1 and IL-1ß, and decreased hypernociception in mice deficient for TNF-α or its receptors. Pharmacological blockade of TNF-α with Etanercept or pentoxyfylline produced similar results. Mechanistically, TNF-α blockade resulted in lower amounts of IL-1ß protein and pro-IL-1ß mRNA transcripts in joints. Gene-modified mice that express only transmembrane TNF-α had an inflammatory response similar to that of WT mice and blockade of soluble TNF-α (XPro™1595) did not decrease MSU-induced inflammation. In conclusion, TNF-α drives expression of pro-IL-1ß mRNA and IL-1ß protein in experimental gout and that its transmembrane form is sufficient to trigger MSU-induced inflammation in mice.


Subject(s)
Gout/immunology , Hyperalgesia/etiology , Inflammation/immunology , Tumor Necrosis Factor-alpha/metabolism , Animals , Disease Models, Animal , Gout/complications , Gout/metabolism , Inflammation/metabolism , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Knee Joint , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Physical Stimulation , Real-Time Polymerase Chain Reaction , Uric Acid/adverse effects , Uric Acid/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...