Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36902230

ABSTRACT

Mayaro virus (MAYV) is an emerging arthropod-borne virus endemic in Latin America and the causative agent of arthritogenic febrile disease. Mayaro fever is poorly understood; thus, we established an in vivo model of infection in susceptible type-I interferon receptor-deficient mice (IFNAR-/-) to characterize the disease. MAYV inoculations in the hind paws of IFNAR-/- mice result in visible paw inflammation, evolve into a disseminated infection and involve the activation of immune responses and inflammation. The histological analysis of inflamed paws indicated edema at the dermis and between muscle fibers and ligaments. Paw edema affected multiple tissues and was associated with MAYV replication, the local production of CXCL1 and the recruitment of granulocytes and mononuclear leukocytes to muscle. We developed a semi-automated X-ray microtomography method to visualize both soft tissue and bone, allowing for the quantification of MAYV-induced paw edema in 3D with a voxel size of 69 µm3. The results confirmed early edema onset and spreading through multiple tissues in inoculated paws. In conclusion, we detailed features of MAYV-induced systemic disease and the manifestation of paw edema in a mouse model extensively used to study infection with alphaviruses. The participation of lymphocytes and neutrophils and expression of CXCL1 are key features in both systemic and local manifestations of MAYV disease.


Subject(s)
Alphavirus Infections , Alphavirus , Animals , Mice , Alphavirus Infections/pathology , Inflammation , Synchrotrons , X-Ray Microtomography
2.
Nanoscale ; 5(19): 9310-6, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23948808

ABSTRACT

The production of hydrogen from water using only a catalyst and solar energy is one of the most challenging and promising outlets for the generation of clean and renewable energy. Semiconductor photocatalysts for solar hydrogen production by water photolysis must employ stable, non-toxic, abundant and inexpensive visible-light absorbers capable of harvesting light photons with adequate potential to reduce water. Here, we show that α-Fe2O3 can meet these requirements by means of using hydrothermally prepared nanorings. These iron oxide nanoring photocatalysts proved capable of producing hydrogen efficiently without application of an external bias. In addition, Co(OH)2 nanoparticles were shown to be efficient co-catalysts on the nanoring surface by improving the efficiency of hydrogen generation. Both nanoparticle-coated and uncoated nanorings displayed superior photocatalytic activity for hydrogen evolution when compared with TiO2 nanoparticles, showing themselves to be promising materials for water-splitting using only solar light.

SELECTION OF CITATIONS
SEARCH DETAIL
...