Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1243818, 2023.
Article in English | MEDLINE | ID: mdl-37808276

ABSTRACT

The emergence of antibiotic resistance is a growing threat to human health, and therefore, alternatives to existing compounds are urgently needed. In this context, a novel fluorescent photoactivatable diarylacetylene has been identified and characterised for its antibacterial activity, which preferentially eliminates Gram-positive over Gram-negative bacteria. Experiments confirmed that the Gram-negative lipopolysaccharide-rich outer surface is responsible for tolerance, as strains with reduced outer membrane integrity showed increased susceptibility. Additionally, bacteria deficient in oxidative damage repair pathways also displayed enhanced sensitivity, confirming that reactive oxygen species production is the mechanism of antibacterial activity. This new diarylacetylene shows promise as an antibacterial agent against Gram-positive bacteria that can be activated in situ, potentially for the treatment of skin infections.

2.
Plant Physiol ; 189(2): 934-954, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35238389

ABSTRACT

The ubiquitin-like modifying peptide SMALL UBIQUITIN-LIKE MODIFIER (SUMO) has become a known modulator of the plant response to multiple environmental stimuli. A common feature of many of these external stresses is the production of reactive oxygen species (ROS). Taking into account that SUMO conjugates rapidly accumulate in response to an external oxidative stimulus, it is likely that ROS and sumoylation converge at the molecular and regulatory levels. In this study, we explored the SUMO-ROS relationship, using as a model the Arabidopsis (Arabidopsis thaliana) null mutant of the major SUMO-conjugation enhancer, the E3 ligase SAP AND MIZ 1 (SIZ1). We showed that SIZ1 is involved in SUMO conjugate increase when primed with both exogenous and endogenous ROS. In siz1, seedlings were sensitive to oxidative stress imposition, and mutants accumulated different ROS throughout development. We demonstrated that the deregulation in hydrogen peroxide and superoxide homeostasis, but not of singlet O2 (1O2), was partially due to SA accumulation in siz1. Furthermore, transcriptomic analysis highlighted a transcriptional signature that implicated siz1 with 1O2 homeostasis. Subsequently, we observed that siz1 displayed chloroplast morphological defects and altered energy dissipation activity and established a link between the chlorophyll precursor protochlorophyllide and deregulation of PROTOCHLOROPHYLLIDE OXIDOREDUCTASE A (PORA), which is known to drive overproduction of 1O2. Ultimately, network analysis uncovered known and additional associations between transcriptional control of PORA and SIZ1-dependent sumoylation. Our study connects sumoylation, and specifically SIZ1, to the control of chloroplast functions and places sumoylation as a molecular mechanism involved in ROS homeostatic and signaling events.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Homeostasis , Ligases/genetics , Ligases/metabolism , Protochlorophyllide , Reactive Oxygen Species , Sumoylation , Ubiquitin , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
3.
Front Plant Sci ; 6: 414, 2015.
Article in English | MEDLINE | ID: mdl-26089832

ABSTRACT

Glucosinolates are brassicaceous secondary metabolites that have long been considered as chemical shields against pathogen invasion. Isothiocyanates (ITCs), are glucosinolate-breakdown products that have negative effects on the growth of various fungal species. We explored the mechanism by which ITCs could cause fungal cell death using Alternaria brassicicola, a specialist Brassica pathogens, as model organism. Exposure of the fungus to ICTs led to a decreased oxygen consumption rate, intracellular accumulation of reactive oxygen species (ROS) and mitochondrial-membrane depolarization. We also found that two major regulators of the response to oxidative stress, i.e., the MAP kinase AbHog1 and the transcription factor AbAP1, were activated in the presence of ICTs. Once activated by ICT-derived ROS, AbAP1 was found to promote the expression of different oxidative-response genes. This response might play a significant role in the protection of the fungus against ICTs as mutants deficient in AbHog1 or AbAP1 were found to be hypersensitive to these metabolites. Moreover, the loss of these genes was accompanied by a significant decrease in aggressiveness on Brassica. We suggest that the robust protection response against ICT-derived oxidative stress might be a key adaptation mechanism for successful infection of host plants by Brassicaceae-specialist necrotrophs like A. brassicicola.

4.
J Phys Chem B ; 117(16): 4412-21, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23186016

ABSTRACT

Aging of semiconductor nanocrystals (NCs) is well-known to attenuate the spontaneous photoluminescence from the band edge excitonic state by introduction of nonradiative trap states formed at the NC surface. In order to explore charge carrier dynamics dictated by the surface of the NC, femtosecond pump/probe spectroscopic experiments are performed on freshly synthesized and aged CdTe NCs. These experiments reveal fast electron trapping for aged CdTe NCs from the single excitonic state (X). Pump fluence dependence with excitonic state-resolved optical pumping enables directly populating the biexcitonic state (XX), which produces further accelerated electron trapping rates. This increase in electron trapping rate triggers coherent acoustic phonons by virtue of the ultrafast impulsive time scale of the surface trapping process. The observed trapping rates are discussed in terms of electron transfer theory.

5.
J Chem Phys ; 129(8): 084701, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-19044835

ABSTRACT

Biexcitons in strongly confined, colloidal CdSe quantum dots were investigated with excitonic state selectivity combined with 10 fs temporal precision. Within the first 50 fs, the first excited state of the biexciton was observed. By 100 ps, mixed character biexcitons were observed, comprised of a core exciton and a surface trapped exciton. The size dependence of the biexciton binding energies is reported for these specific biexcitons. Analysis of the spectral signatures of each biexcitonic state yields a quantitative measure of enhanced excited state trapping rates at the surface of the quantum dots. By comparing the biexcitonic signals to the state-filling signals, we show that it is primarily the holes which are trapped at the interface on the 100 ps time scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...