Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Sci Rep ; 14(1): 13079, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38844507

ABSTRACT

As patient exposure to ionizing radiation from medical imaging and its risks are continuing issues, this study aimed to evaluate DNA damage and repair markers after myocardial perfusion single-photon emission computed tomography (MPS). Thirty-two patients undergoing Tc-99m sestamibi MPS were studied. Peripheral blood was collected before radiotracer injection at rest and 60-90 min after injection. The comet assay (single-cell gel electrophoresis) was performed with peripheral blood cells to detect DNA strand breaks. Three descriptors were evaluated: the percentage of DNA in the comet tail, tail length, and tail moment (the product of DNA tail percentage and tail length). Quantitative PCR (qPCR) was performed to evaluate the expression of five genes related to signaling pathways in response to DNA damage and repair (ATM, ATR, BRCA1, CDKN1A, and XPC). Mann-Whitney's test was employed for statistical analysis; p < 0.05 was considered significant. Mean Tc-99m sestamibi dose was 15.1 mCi. After radiotracer injection, comparing post-exposure to pre-exposure samples of each of the 32 patients, no statistically significant differences of the DNA percentage in the tail, tail length or tail moment were found. qPCR revealed increased expression of BRCA1 and XPC, without any significant difference regarding the other genes. No significant increase in DNA strand breaks was detected after a single radiotracer injection for MPS. There was activation of only two repair genes, which may indicate that, in the current patient sample, the effects of ionizing radiation on the DNA were not large enough to trigger intense repair responses, suggesting the absence of significant DNA damage.


Subject(s)
DNA Damage , DNA Repair , Tomography, Emission-Computed, Single-Photon , Humans , Female , Male , Tomography, Emission-Computed, Single-Photon/methods , DNA Repair/genetics , Middle Aged , Aged , Technetium Tc 99m Sestamibi , Myocardial Perfusion Imaging/methods , BRCA1 Protein/genetics , Comet Assay
2.
BMC Cardiovasc Disord ; 22(1): 394, 2022 09 03.
Article in English | MEDLINE | ID: mdl-36057570

ABSTRACT

BACKGROUND: As patient exposure to ionizing radiation raises concern about malignancy risks, this study evaluated the effect of ionizing radiation on patients undergoing myocardial perfusion imaging (MPI) using the comet assay, a method for detection of DNA damage. METHODS: Patients without cancer, acute or autoimmune diseases, recent surgery or trauma, were studied. Gated single-photon myocardial perfusion imaging was performed with Tc-99m sestamibi. Peripheral blood was collected before radiotracer injection at rest and 60-90 min after injection. Single-cell gel electrophoresis (comet assay) was performed with blood lymphocytes to detect strand breaks, which determine a "comet tail" of variable size, visually scored by 3 observers in a fluorescence microscope after staining (0: no damage, no tail; 1: small damage; 2: large damage; 3: full damage). A damage index was calculated as a weighted average of the cell scores. RESULTS: Among the 29 individuals included in the analysis, age was 65.3 ± 9.9 years and 18 (62.1%) were male. The injected radiotracer dose was 880.6 ± 229.4 MBq. Most cells (approximately 70%) remained without DNA fragmentation (class 0) after tracer injection. There were nonsignificant increases of classes 1 and 2 of damage. Class 3 was the least frequent both before and after radiotracer injection, but displayed a significant, 44% increase after injection. CONCLUSION: While lymphocytes mostly remained in class 0, an increase in class 3 DNA damage was detected. This may suggest that, despite a probable lack of biologically relevant DNA damage, there is still a need for tracer dose reductions in MPI.


Subject(s)
Myocardial Perfusion Imaging , Technetium Tc 99m Sestamibi , Aged , DNA Damage , Female , Humans , Male , Middle Aged , Myocardial Perfusion Imaging/methods , Perfusion , Pilot Projects , Radiation, Ionizing
3.
Article in English | MEDLINE | ID: mdl-35589387

ABSTRACT

Aortic diseases arising in Marfan Syndrome (MFS), such as in aneurysms and dissections of the thoracic aorta, are related to genetic alterations in the FBN1 gene. Databases, such as Universal Mutations-FBN1, ClinVar and The Human Gene Mutation, contain more than a thousand FBN1 mutations associated with MFS. The FBN1 gene, which encodes fibrillin-1, is responsible for the integral production of different protein domains. Possible genetic changes may lead to a weakening of blood vessels, leading to the development of aortopathies. In this study, we present the association of a novel FBN1 variant with MFS. The proband is a man who presented ascending aortic aneurysm and dissection (TAAD) at 42-yr-old, which was surgically treated. Clinical investigations were performed in all family members enrolled in the study. Marfan signs were observed in the proband, daughters and granddaughter. Direct sequencing of the FBN1 gene in the proband identified a novel truncation variant p.(Glu2019Ter) and a cascade screening were done. The variant was classified as pathogenic and causal for MFS according to the American College of Medical Genetics and Genomics (ACMG) criteria and revised Ghent nosology for MFS diagnosis, respectively. Proband's daughter and granddaughter harbor the variant, however without aortic alteration. This work reports for the first time a patient with the FBN1-p.(Glu2019Ter) variant and its association with MFS/TAAD.

5.
BMC Res Notes ; 11(1): 635, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30176909

ABSTRACT

BACKGROUND: Diabetes mellitus patients (DM) have more severe progression of atherosclerotic disease than non-diabetic (NDM) individuals. In situ inflammation and oxidative stress are key points in the pathophysiology of atherosclerosis, a concept largely based on animal model research. There are few studies comparing inflammation and oxidative stress parameters in medium-sized arteries between DM and NDM patients. A fragment of the internal mammary artery used in coronary artery bypass grafting (CABG) will be employed for this purpose OBJECTIVE: To assess the expression of inflammatory markers tumor necrosis factor-α, transforming growth factor-ß1, nuclear factor kappa B, the enzymes superoxide dismutase, and catalase in the vascular wall of the arterial graft used in CABG, comparing DM and NDM patients RESULTS: The present study will add information to the vascular degenerative processes occurring in diabetic patients.


Subject(s)
Coronary Artery Bypass , Coronary Artery Disease/immunology , Inflammation , Oxidative Stress , Adolescent , Adult , Coronary Artery Disease/physiopathology , Cross-Sectional Studies , Diabetes Complications , Diabetes Mellitus , Humans , Male , Research Design
6.
Arq Bras Cardiol ; 108(4): 354-360, 2017 Apr.
Article in English, Portuguese | MEDLINE | ID: mdl-28538763

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disease caused by mutations in genes encoding sarcomere proteins. It is the major cause of sudden cardiac death in young high-level athletes. Studies have demonstrated a poorer prognosis when associated with specific mutations. The association between HCM genotype and phenotype has been the subject of several studies since the discovery of the genetic nature of the disease. This study shows the effect of a MYBPC3 compound variant on the phenotypic HCM expression. A family in which a young man had a clinical diagnosis of HCM underwent clinical and genetic investigations. The coding regions of the MYH7, MYBPC3 and TNNT2 genes were sequenced and analyzed. The proband present a malignant manifestation of the disease, and is the only one to express HCM in his family. The genetic analysis through direct sequencing of the three main genes related to this disease identified a compound heterozygous variant (p.E542Q and p.D610H) in MYBPC3. A family analysis indicated that the p.E542Q and p.D610H alleles have paternal and maternal origin, respectively. No family member carrier of one of the variant alleles manifested clinical signs of HCM. We suggest that the MYBPC3-biallelic heterozygous expression of p.E542Q and p.D610H may cause the severe disease phenotype seen in the proband. Resumo A cardiomiopatia hipertrófica (CMH) é uma doença autossômica dominante causada por mutações em genes que codificam as proteínas dos sarcômeros. É a principal causa de morte súbita cardíaca em atletas jovens de alto nível. Estudos têm demonstrado um pior prognóstico associado a mutações específicas. A associação entre genótipo e fenótipo em CMH tem sido objeto de diversos estudos desde a descoberta da origem genética dessa doença. Este trabalho apresenta o efeito de uma mutação composta em MYBPC3 na expressão fenotípica da CMH. Uma família na qual um jovem tem o diagnóstico clínico de CMH foi submetida à investigação clínica e genética. As regiões codificadoras dos genes MYH7, MYBPC3 e TNNT2 foram sequenciadas e analisadas. O probando apresenta uma manifestação maligna da doença e é o único em sua família a desenvolver CMH. A análise genética pelo sequenciamento direto dos três principais genes relacionados à essa doença identificou uma variante em heterozigose composta (p.E542Q e p.D610H) em MYBPC3. A análise da família mostrou que os alelos p.E542Q e p.D610H tem origem paterna e materna, respectivamente. Nenhum familiar portador de um dos alelos variantes manifestou sinais clínicos de CMH. Sugerimos que a expressão heterozigótica bialélica de p.E542Q e p.D610H pode ser responsável pelo fenótipo severo da doença encontrada no probando.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Carrier Proteins/genetics , Adolescent , Cardiomyopathy, Hypertrophic/diagnostic imaging , DNA Primers , Heterozygote , Humans , Male , Mutation/genetics , Pedigree , Phenotype
7.
Cad Saude Publica ; 33(4): e00122816, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28538790

ABSTRACT

The Study of Cardiovascular Risk in Adolescents (ERICA) is a pioneering study that aimed to assess the prevalence of cardiovascular risk factors, including metabolic syndrome components in Brazilian adolescents. This study aims to describe the methodological aspects related to blood collection as well as to report pertaining results of the preparation, transport, storage, and exams in ERICA. Exams in ERICA were performed in a single laboratory and blood samples were collected in schools in a standardized manner. Logistics involved air transportation of samples to the reference laboratory with controlled temperature since sample collection. The serum was stored in local biorepositories in four centers to be used in future analyses. During the study, 284,247 exams were performed and rate of participation in exams was 56.2%, thus involving 40,732 adolescents. From the total, 92.6% of the samples reached the reference laboratory maintaining the temperature between 0-10°C. No clinical significant changes in results due to temperature changes were identified. External quality control recorded satisfactory results in 98.7% of the evaluations. Four biorepositories with samples of 7,785 adolescents were created. Thus, we can consider that the logistics adopted in ERICA was fairly successful and description of this as well as the difficulties experienced in Brazil can inform and facilitate the planning of future studies, especially in developing countries.


Subject(s)
Blood Preservation , Blood Specimen Collection/methods , Adolescent , Blood Specimen Collection/statistics & numerical data , Brazil , Cardiovascular Diseases/blood , Clinical Laboratory Techniques , Cross-Sectional Studies , Humans , Residence Characteristics , Schools/statistics & numerical data , Students , Transportation
8.
Arq. bras. cardiol ; 108(4): 354-360, Apr. 2017. tab, graf
Article in English | LILACS | ID: biblio-1038529

ABSTRACT

Abstract Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disease caused by mutations in genes encoding sarcomere proteins. It is the major cause of sudden cardiac death in young high-level athletes. Studies have demonstrated a poorer prognosis when associated with specific mutations. The association between HCM genotype and phenotype has been the subject of several studies since the discovery of the genetic nature of the disease. This study shows the effect of a MYBPC3 compound variant on the phenotypic HCM expression. A family in which a young man had a clinical diagnosis of HCM underwent clinical and genetic investigations. The coding regions of the MYH7, MYBPC3 and TNNT2 genes were sequenced and analyzed. The proband present a malignant manifestation of the disease, and is the only one to express HCM in his family. The genetic analysis through direct sequencing of the three main genes related to this disease identified a compound heterozygous variant (p.E542Q and p.D610H) in MYBPC3. A family analysis indicated that the p.E542Q and p.D610H alleles have paternal and maternal origin, respectively. No family member carrier of one of the variant alleles manifested clinical signs of HCM. We suggest that the MYBPC3-biallelic heterozygous expression of p.E542Q and p.D610H may cause the severe disease phenotype seen in the proband.


Resumo A cardiomiopatia hipertrófica (CMH) é uma doença autossômica dominante causada por mutações em genes que codificam as proteínas dos sarcômeros. É a principal causa de morte súbita cardíaca em atletas jovens de alto nível. Estudos têm demonstrado um pior prognóstico associado a mutações específicas. A associação entre genótipo e fenótipo em CMH tem sido objeto de diversos estudos desde a descoberta da origem genética dessa doença. Este trabalho apresenta o efeito de uma mutação composta em MYBPC3 na expressão fenotípica da CMH. Uma família na qual um jovem tem o diagnóstico clínico de CMH foi submetida à investigação clínica e genética. As regiões codificadoras dos genes MYH7, MYBPC3 e TNNT2 foram sequenciadas e analisadas. O probando apresenta uma manifestação maligna da doença e é o único em sua família a desenvolver CMH. A análise genética pelo sequenciamento direto dos três principais genes relacionados à essa doença identificou uma variante em heterozigose composta (p.E542Q e p.D610H) em MYBPC3. A análise da família mostrou que os alelos p.E542Q e p.D610H tem origem paterna e materna, respectivamente. Nenhum familiar portador de um dos alelos variantes manifestou sinais clínicos de CMH. Sugerimos que a expressão heterozigótica bialélica de p.E542Q e p.D610H pode ser responsável pelo fenótipo severo da doença encontrada no probando.


Subject(s)
Humans , Male , Adolescent , Cardiomyopathy, Hypertrophic/genetics , Carrier Proteins/genetics , Pedigree , Phenotype , Cardiomyopathy, Hypertrophic/diagnostic imaging , DNA Primers , Heterozygote , Mutation/genetics
9.
BMC Public Health ; 15: 850, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26335689
10.
BMC Public Health ; 15: 94, 2015 Feb 07.
Article in English | MEDLINE | ID: mdl-25880653

ABSTRACT

BACKGROUND: The Study of Cardiovascular Risk in Adolescents (Portuguese acronym, "ERICA") is a multicenter, school-based country-wide cross-sectional study funded by the Brazilian Ministry of Health, which aims at estimating the prevalence of cardiovascular risk factors, including those included in the definition of the metabolic syndrome, in a random sample of adolescents aged 12 to 17 years in Brazilian cities with more than 100,000 inhabitants. Approximately 85,000 students were assessed in public and private schools. Brazil is a continental country with a heterogeneous population of 190 million living in its five main geographic regions (North, Northeast, Midwest, South and Southeast). ERICA is a pioneering study that will assess the prevalence rates of cardiovascular risk factors in Brazilian adolescents using a sample with national and regional representativeness. This paper describes the rationale, design and procedures of ERICA. METHODS/DESIGN: Participants answered a self-administered questionnaire using an electronic device, in order to obtain information on demographic and lifestyle characteristics, including physical activity, smoking, alcohol intake, sleeping hours, common mental disorders and reproductive and oral health. Dietary intake was assessed using a 24-hour dietary recall. Anthropometric measures (weight, height and waist circumference) and blood pressure were also be measured. Blood was collected from a subsample of approximately 44,000 adolescents for measurements of fasting glucose, total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, glycated hemoglobin and fasting insulin. DISCUSSION: The study findings will be instrumental to the development of public policies aiming at the prevention of obesity, atherosclerotic diseases and diabetes in an adolescent population.


Subject(s)
Cardiovascular Diseases/epidemiology , Health Behavior , Life Style , Research Design , Urban Population , Adolescent , Blood Glucose , Blood Pressure , Body Weights and Measures , Brazil/epidemiology , Cross-Sectional Studies , Diabetes Mellitus/epidemiology , Female , Humans , Lipids/blood , Male , Metabolic Syndrome/epidemiology , Obesity/epidemiology , Parents , Prevalence , Residence Characteristics , Risk Factors , Smoking/epidemiology , Socioeconomic Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...