Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Sci (Lond) ; 129(12): 1195-206, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26399707

ABSTRACT

Elevated low-density lipoprotein (LDL) concentration in mid-life increases the risk of developing Alzheimer's disease (AD) in later life. Increased oxidized LDL (oxLDL) modification and nitration is observed during dementia and hypercholesterolaemia. We investigated the hypothesis that statin intervention in mid-life mitigates the inflammatory effects of oxLDL on the microvasculature. Human microvascular endothelial cells (HMVECs) were maintained in transwells to mimic the microvasculature and exposed to patient and control LDL. Blood was obtained from statin-naive, normo- and hyper-lipidaemic subjects, AD with vascular dementia (AD-plus) and AD subjects (n=10/group) at baseline. Only hyperlipidaemic subjects with normal cognitive function received 40 mg of simvastatin intervention/day for 3 months. Blood was re-analysed from normo- and hyper-lipidaemic subjects after 3 months. LDL isolated from statin-naive hyperlipidaemic, AD and AD-plus subjects was more oxidized (agarose gel electrophoretic mobility, protein carbonyl content and 8-isoprostane F2α) compared with control subjects. Statin intervention decreased protein carbonyls (2.5±0.4 compared with 3.95±0.2 nmol/mg; P<0.001) and 8-isoprostane F2α (30.4±4.0 pg/ml compared with 43.5±8.42 pg/ml; P<0.05). HMVEC treatment with LDL-lipids (LDL-L) from hyperlipidaemic, AD and AD-plus subjects impaired endothelial tight junction expression and decreased total glutathione levels (AD; 18.61±1.3, AD-plus; 16.5±0.7 nmol/mg of protein) compared with untreated cells (23.8±1.2 compared with nmol/mg of protein). Basolateral interleukin (IL)-6 secretion was increased by LDL-L from hyperlipidaemic (78.4±1.9 pg/ml), AD (63.2±5.9 pg/ml) and AD-plus (80.8±0.9 pg/ml) groups compared with healthy subject lipids (18.6±3.6 pg/ml). LDL-L isolated after statin intervention did not affect endothelial function. In summary, LDL-L from hypercholesterolaemic, AD and AD-plus patients are inflammatory to HMVECs. In vivo intervention with statins reduces the damaging effects of LDL-L on HMVECs.


Subject(s)
Alzheimer Disease/blood , Endothelial Cells/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hypercholesterolemia/drug therapy , Inflammation Mediators/blood , Lipoproteins, LDL/blood , Microvessels/drug effects , Simvastatin/therapeutic use , Adult , Aged , Aged, 80 and over , Alzheimer Disease/diagnosis , Biomarkers/blood , Capillary Permeability/drug effects , Cells, Cultured , Endothelial Cells/metabolism , England , Germany , Humans , Hypercholesterolemia/blood , Hypercholesterolemia/diagnosis , Lipid Peroxidation/drug effects , Male , Microvessels/metabolism , Middle Aged , Protein Carbonylation/drug effects , Time Factors , Treatment Outcome
2.
Antioxid Redox Signal ; 12(6): 743-85, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-19686039

ABSTRACT

The infiltration and persistence of hematopoietic immune cells within the rheumatoid arthritis (RA) joint results in elevated levels of pro-inflammatory cytokines, increased reactive oxygen (ROS) and -nitrogen (RNS) species generation, that feeds a continuous self-perpetuating cycle of inflammation and destruction. Meanwhile, the controlled production of ROS is required for signaling within the normal physiological reaction to perceived "foreign matter" and for effective apoptosis. This review focuses on the signaling pathways responsible for the induction of the normal immune response and the contribution of ROS to this process. Evidence for defects in the ability of immune cells in RA to regulate the generation of ROS and the consequence for their immune function and for RA progression is considered. As the hypercellularity of the rheumatoid joint and the associated persistence of hematopoietic cells within the rheumatoid joint are symptomatic of unresponsiveness to apoptotic stimuli, the role of apoptotic signaling proteins (specifically Bcl-2 family members and the tumor suppressor p53) as regulators of ROS generation and apoptosis are considered, evaluating evidence for their aberrant expression and function in RA. We postulate that ROS generation is required for effective therapeutic intervention.


Subject(s)
Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/therapy , Reactive Nitrogen Species/biosynthesis , Reactive Nitrogen Species/immunology , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism , Animals , Arthritis, Rheumatoid/pathology , Cell Survival/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...