Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmazie ; 64(5): 327-31, 2009 May.
Article in English | MEDLINE | ID: mdl-19530444

ABSTRACT

The aim of this study was to investigate the pharmacological effects of discretamine, an isoquinoline alkaloid isolated from Duguetia magnolioidea Maas, on the cardiovascular system, using a combined in vivo and in vitro approach. Blood pressure and heart rate measurements, as well as changes in isometric tension in rat superior mesenteric arterial rings, elicited by discretamine were recorded. In normotensive non-anaesthetized rats (n = 6), discretamine (0.01; 0.05; 0.1; 0.5; 1, 5 and 10 mg/kg i.v., randomly) injections produced hypotension (-5.2 +/- 1.7; -5.1 +/- 2.1; -7.7 +/- 2; -8.9 +/- 1.7; -9.6 +/- 2.2; -16.8 +/- 2.8 and -13.4 +/- 1.3 mmHg, respectively) accompanied by tachycardia (24.2 +/- 6.1; 36.8 +/- 11.3; 44.2 +/- 7.7; 45.9 +/- 6.4; 48.2 +/- 9.1; 72.1 +/- 14.5 and 64 +/- 17 bpm, respectively). Hypotensive and tachycardic responses were significantly attenuated after L-NAME (20 mg/kg, i.v.) administration. In isolated rat mesenteric artery rings, with endothelium intact, discretamine (10(-12) - 10(-5) M) induced concentration-dependent relaxation of the contractions induced by phenylephrine (10 microM) [pD2 = 6.8 +/- 0.1]. The effect of the discretamine on phenylephrine induced contractions was significantly attenuated after removal of the vascular endothelium [pD2 = 5.8 +/- 0.04]. Similar results were obtained after pre-treatment with L-NAME 100 microM [pD2 = 5.8 +/- 0.04], L-NAME 300 microM [pD2 = 5.9 +/- 0.06], Hydroxocobalamin 30 microM [pD2 = 5.8 +/- 0.06] or ODQ 10 microM [pD2 = 5.8 +/- 0.04]. In addition, in rabbit aorta endothelial cell line, discretamine significantly increased NO3- levels. These results suggest that the hypotensive effect induced by discretamine is probably due to a peripheral vasodilatation, at least, in part, due to the release of NO from vascular endothelium and consequent activation of soluble guanylyl cyclase (GC) in the vascular smooth muscle cells.


Subject(s)
Antihypertensive Agents/pharmacology , Berberine Alkaloids/pharmacology , Endothelium, Vascular/physiology , Endothelium-Dependent Relaxing Factors/physiology , Muscle, Smooth, Vascular/drug effects , Nitric Oxide/physiology , Animals , Blood Pressure/drug effects , Cells, Cultured , Endothelium, Vascular/drug effects , Heart Rate/drug effects , Male , Mesenteric Arteries/drug effects , Muscle Relaxation/drug effects , Nitric Oxide/metabolism , Rabbits , Rats , Rats, Wistar
2.
Phytomedicine ; 11(2-3): 130-4, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15070162

ABSTRACT

In a previous work, we demonstrated that, in normotensive rats, AFL induced a marked hypotension due to a decrease in total peripheral resistances (TPR), partially secondary to the release of NO by the endothelium. NO did not, however, account for the total vasodilation produced by AFL in these rats. The aim of this study was to determine the involvement of the intracellular calcium mobilization in the vasorelaxant action induced by AFL in the rat aorta. In aorta of normotensive rats AFL (10, 20, 40 and 80 microg/ml) inhibited the sustained contractions induced by KCl (80 and 30 mM) and phenylephrine (Phe, 1 microM) with similar IC50 values (54 +/- 6, 52 +/- 4 and 65 +/- 4 microg/ml, respectively). The relaxing response induced by AFL against Phe-induced contractions was modified significantly by the endothelium removal (IC50 = 132 +/- 23 and 65 +/- 4 microg/ml, endothelium removed and intact endothelium aortic rings, respectively). Nevertheless, removal of the endothelium did not significantly change IC50 values when KCl (30 and 80 mM) was used as the contractile agent. The inhibitory effect induced by AFL on high (64.5 mM) K+-induced contraction was potentiated slightly (p < 0.05) by the decrease (from 2.5 to 0.3 mM, Ca2+) and attenuated by the increase (from 2.5 to 7.5 mM Ca2+) in the external [Ca2+]. In addition, in aortas from normotensive rats, AFL antagonized transient contractions induced in Ca2+-free media induced by 1 microM noradrenaline in a concentration-dependent manner, but not those induced by 20 mM caffeine. It is suggested that the remaining vasodilator effect of AFL in normotensive rats is probably due to an inhibition of Ca2+ influx and/or inhibition of intracellular Ca2+ mobilization from the noradrenaline-sensitive stores.


Subject(s)
Albizzia , Aorta, Thoracic/drug effects , Phytotherapy , Plant Extracts/pharmacology , Vasodilator Agents/pharmacology , Animals , Dose-Response Relationship, Drug , Endothelium, Vascular/drug effects , Inhibitory Concentration 50 , Male , Muscle Contraction/drug effects , Phenylephrine , Plant Extracts/administration & dosage , Plant Extracts/therapeutic use , Potassium Chloride , Rats , Rats, Wistar , Vasodilator Agents/administration & dosage , Vasodilator Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...