Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(6): e0254736, 2022.
Article in English | MEDLINE | ID: mdl-35772072

ABSTRACT

In bioinformatics, alignment is an essential technique for finding similarities between biological sequences. Usually, the alignment is performed with the Smith-Waterman (SW) algorithm, a well-known sequence alignment technique of high-level precision based on dynamic programming. However, given the massive data volume in biological databases and their continuous exponential increase, high-speed data processing is necessary. Therefore, this work proposes a parallel hardware design for the SW algorithm with a systolic array structure to accelerate the forward and backtracking steps. For this purpose, the architecture calculates and stores the paths in the forward stage for pre-organizing the alignment, which reduces the complexity of the backtracking stage. The backtracking starts from the maximum score position in the matrix and generates the optimal SW sequence alignment path. The architecture was validated on Field-Programmable Gate Array (FPGA), and synthesis analyses have shown that the proposed design reaches up to 79.5 Giga Cell Updates per Second (GCPUS).


Subject(s)
Algorithms , Computational Biology , Computational Biology/methods , Databases, Factual , Equipment Design , Sequence Alignment , Software
2.
Sensors (Basel) ; 22(9)2022 May 07.
Article in English | MEDLINE | ID: mdl-35591245

ABSTRACT

Tactile Internet (TI) is a new internet paradigm that enables sending touch interaction information and other stimuli, which will lead to new human-to-machine applications. However, TI applications require very low latency between devices, as the system's latency can result from the communication channel, processing power of local devices, and the complexity of the data processing techniques, among others. Therefore, this work proposes using dedicated hardware-based reconfigurable computing to reduce the latency of prediction techniques applied to TI. Finally, we demonstrate that prediction techniques developed on field-programmable gate array (FPGA) can minimize the impacts caused by delays and loss of information. To validate our proposal, we present a comparison between software and hardware implementations and analyze synthesis results regarding hardware area occupation, throughput, and power consumption. Furthermore, comparisons with state-of-the-art works are presented, showing a significant reduction in power consumption of ≈1300× and reaching speedup rates of up to ≈52×.


Subject(s)
Computers , Touch , Humans , Internet , Software
3.
Sensors (Basel) ; 21(12)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204291

ABSTRACT

This work proposes a high-throughput implementation of the Otsu automatic image thresholding algorithm on Field Programmable Gate Array (FPGA), aiming to process high-resolution images in real-time. The Otsu method is a widely used global thresholding algorithm to define an optimal threshold between two classes. However, this technique has a high computational cost, making it difficult to use in real-time applications. Thus, this paper proposes a hardware design exploiting parallelization to optimize the system's processing time. The implementation details and an analysis of the synthesis results concerning the hardware area occupation, throughput, and dynamic power consumption, are presented. Results have shown that the proposed hardware achieved a high speedup compared to similar works in the literature.


Subject(s)
Algorithms , Computers
4.
Neural Netw ; 143: 818-827, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34112575

ABSTRACT

Self-Organizing Maps (SOMs) are extensively used for data clustering and dimensionality reduction. However, if applications are to fully benefit from SOM based techniques, high-speed processing is demanding, given that data tends to be both highly dimensional and yet "big". Hence, a fully parallel architecture for the SOM is introduced to optimize the system's data processing time. Unlike most literature approaches, the architecture proposed here does not contain sequential steps - a common limiting factor for processing speed. The architecture was validated on FPGA and evaluated concerning hardware throughput and the use of resources. Comparisons to the state of the art show a speedup of 8.91× over a partially serial implementation, using less than 15% of hardware resources available. Thus, the method proposed here points to a hardware architecture that will not be obsolete quickly.


Subject(s)
Algorithms , Computers , Cluster Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...