Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
An Acad Bras Cienc ; 90(4): 3541-3549, 2018.
Article in English | MEDLINE | ID: mdl-30184013

ABSTRACT

The sweet potato is an alternative energy source, but its sustainability depends on efficient water use. The objective of this study was to evaluate sweet potato morpho-physiological characteristics, and water use efficiency (WUE). Irrigation depths of 50, 75, 100, and 125% of crop evapotranspiration (ETc) were applied. The morpho-physiological indicators, WUE, leaf area index (LAI), leaf water potential, leaf temperature, and leaf chlorophyll index (ICF), were evaluated. The WUE of the sweet potato cultivars increased until the 75% water depth of the ETc. The LAI of these cultivars increased with irrigation depth, with higher values at 100% of the ETc. The leaf water potential of the two sweet potato cultivars was lowest with the lower irrigation depth. Leaf temperature was closer to that of ambient temperatures in treatments with greater irrigation depth. The increase of the WUE with the greater accumulation of dry biomass is due to greater CO2 diffusion by stomata. The reduction in the growth of these plants is due to water stress limiting stomatal conductance, transpiration, leaf growth (LAI) and chlorophyll concentration, proportional to soil moisture conditions. The functional relationship between soil moisture and growth is essential to optimize irrigation management at different growth stages.


Subject(s)
Agricultural Irrigation/methods , Ipomoea batatas/growth & development , Plant Leaves/growth & development , Plant Stomata/physiology
2.
Sci Total Environ ; 429: 107-22, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-21658747

ABSTRACT

Small-scale and household low-cost technologies to provide water free of arsenic for drinking purposes, suitable for isolated rural and periurban areas not connected to water networks in Latin America are described. Some of them are merely adaptation of conventional technologies already used at large and medium scale, but others are environmentally friendly emerging procedures that use local materials and resources of the affected zone. The technologies require simple and low-cost equipment that can be easily handled and maintained by the local population. The methods are based on the following processes: combination of coagulation/flocculation with adsorption, adsorption with geological and other low-cost natural materials, electrochemical technologies, biological methods including phytoremediation, use of zerovalent iron and photochemical processes. Examples of relevant research studies and developments in the region are given. In some cases, processes have been tested only at the laboratory level and there is not enough information about the costs. However, it is considered that the presented technologies constitute potential alternatives for arsenic removal in isolated rural and periurban localities of Latin America. Generation, handling and adequate disposal of residues should be taken into account in all cases.


Subject(s)
Arsenic/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Supply/analysis , Electrochemical Techniques , Environmental Restoration and Remediation , Latin America , Photochemical Processes , Plants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...