Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(50): eabj6737, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34890240

ABSTRACT

We present a three-periodic, chiral, tensegrity structure and demonstrate that it is auxetic. Our tensegrity structure is constructed using the chiral symmetry Π+ cylinder packing, transforming cylinders to elastic elements and cylinder contacts to incompressible rods. The resulting structure displays local reentrant geometry at its vertices and is shown to be auxetic when modeled as an equilibrium configuration of spatial constraints subject to a quasi-static deformation. When the structure is subsequently modeled as a lattice material with elastic elements, the auxetic behavior is again confirmed through finite element modeling. The cubic symmetry of the original structure means that the auxetic behavior is observed in both perpendicular directions and is close to isotropic in magnitude. This structure could be the simplest three-dimensional analog to the two-dimensional reentrant honeycomb. This, alongside the chirality of the structure, makes it an interesting design target for multifunctional materials.

2.
ACS Nano ; 14(4): 4829-4838, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32243133

ABSTRACT

Topology and defects are of fundamental importance for ordered structures on all length scales. Despite extensive research on block copolymer self-assembly in solution, knowledge about topological defects and their effect on nanostructure formation has remained limited. Here, we report on the self-assembly of block copolymer discs and polymersomes with a cylinder line pattern on the surface that develops specific combinations of topological defects to satisfy the Euler characteristics for closed spheres as described by Gauss-Bonnet theorem. The dimension of the line pattern allows the direct visualization of defect emergence, evolution, and annihilation. On discs, cylinders either form end-caps that coincide with λ+1/2 disclinations or they bend around τ+1/2 disclinations in 180° turns (hairpin loops). On polymersomes, two λ+1/2 defects connect into three-dimensional (3D) Archimedean spirals, while two τ+1/2 defects form 3D Fermat spirals. Electron tomography reveals two complementary line patterns on the inside and outside of the polymersome membrane, where λ+1/2 and τ+1/2 disclinations always eclipse on opposing sides ("defect communication"). Attractive defects are able to annihilate with each other into +1 disclinations and stabilize anisotropic polymersomes with sharp tips through screening of high-energy curvature. This study fosters our understanding of the behavior of topological defects in self-assembled polymer materials and aids in the design of polymersomes with preprogrammed shapes governed by synthetic block length and topological rules.

3.
Nature ; 579(7797): 97-100, 2020 03.
Article in English | MEDLINE | ID: mdl-32103182

ABSTRACT

The stiff human foot enables an efficient push-off when walking or running, and was critical for the evolution of bipedalism1-6. The uniquely arched morphology of the human midfoot is thought to stiffen it5-9, whereas other primates have flat feet that bend severely in the midfoot7,10,11. However, the relationship between midfoot geometry and stiffness remains debated in foot biomechanics12,13, podiatry14,15 and palaeontology4-6. These debates centre on the medial longitudinal arch5,6 and have not considered whether stiffness is affected by the second, transverse tarsal arch of the human foot16. Here we show that the transverse tarsal arch, acting through the inter-metatarsal tissues, is responsible for more than 40% of the longitudinal stiffness of the foot. The underlying principle resembles a floppy currency note that stiffens considerably when it curls transversally. We derive a dimensionless curvature parameter that governs the stiffness contribution of the transverse tarsal arch, demonstrate its predictive power using mechanical models of the foot and find its skeletal correlate in hominin feet. In the foot, the material properties of the inter-metatarsal tissues and the mobility of the metatarsals may additionally influence the longitudinal stiffness of the foot and thus the curvature-stiffness relationship of the transverse tarsal arch. By analysing fossils, we track the evolution of the curvature parameter among extinct hominins and show that a human-like transverse arch was a key step in the evolution of human bipedalism that predates the genus Homo by at least 1.5 million years. This renewed understanding of the foot may improve the clinical treatment of flatfoot disorders, the design of robotic feet and the study of foot function in locomotion.


Subject(s)
Biological Evolution , Biomechanical Phenomena , Foot/anatomy & histology , Foot/physiology , Hardness Tests , Animals , Cadaver , Extinction, Biological , Female , Foot/physiopathology , Hominidae/anatomy & histology , Hominidae/physiology , Humans , Middle Aged , Pan troglodytes/anatomy & histology , Pan troglodytes/physiology , Pliability , Talipes Cavus/physiopathology
4.
Phys Rev E ; 100(2-1): 022701, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31574719

ABSTRACT

Instabilities in thin elastic sheets, such as wrinkles, are of broad interest both from a fundamental viewpoint and also because of their potential for engineering applications. Nematic liquid crystal elastomers offer a new form of control of these instabilities through direct coupling between microscopic degrees of freedom, resulting from orientational ordering of rodlike molecules, and macroscopic strain. By a standard method of dimensional reduction, we construct a plate theory for thin sheets of nematic elastomer. We then apply this theory to the study of the formation of wrinkles due to compression of a thin sheet of nematic liquid crystal elastomer atop an elastic or fluid substrate. We find the scaling of the wrinkle wavelength in terms of material parameters and the applied compression. The wavelength of the wrinkles is found to be nonmonotonic in the compressive strain due to the presence of the nematic. Finally, due to soft modes, the critical stress for the appearance of wrinkles can be much higher than in an isotropic elastomer and depends nontrivially on the manner in which the elastomer was prepared.

5.
Soft Matter ; 14(42): 8636-8642, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30334045

ABSTRACT

We study the origins of multiple mechanically stable states exhibited by an elastic shell comprising multiple conical frusta, a geometry common to reconfigurable corrugated structures such as 'bendy straws'. This multistability is characterized by mechanical stability of axially extended and collapsed states, as well as a partially inverted 'bent' state that exhibits stability in any azimuthal direction. To understand the origin of this behavior, we study how geometry and internal stress affect the stability of linked conical frusta. We find that tuning geometrical parameters such as the frustum heights and cone angles can provide axial bistability, whereas stability in the bent state requires a sufficient amount of internal pre-stress, resulting from a mismatch between the natural and geometric curvatures of the shell. We provide insight into the latter effect through curvature analysis during deformation using X-ray computed tomography (CT), and with a simple mechanical model that captures the qualitative behavior of these highly reconfigurable systems.

6.
Proc Math Phys Eng Sci ; 474(2210): 20170753, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29507518

ABSTRACT

In recent years, many structural motifs have been designed with the aim of creating auxetic metamaterials. One area of particular interest in this subject is the creation of auxetic material properties through elastic instability. Such metamaterials switch from conventional behaviour to an auxetic response for loads greater than some threshold value. This paper develops a novel methodology in the analysis of auxetic metamaterials which exhibit elastic instability through analogy with rigid link lattice systems. The results of our analytic approach are confirmed by finite-element simulations for both the onset of elastic instability and post-buckling behaviour including Poisson's ratio. The method gives insight into the relationships between mechanisms within lattices and their mechanical behaviour; as such, it has the potential to allow existing knowledge of rigid link lattices with auxetic paths to be used in the design of future buckling-induced auxetic metamaterials.

7.
Soft Matter ; 13(48): 9087-9092, 2017 Dec 13.
Article in English | MEDLINE | ID: mdl-28972621

ABSTRACT

Thin elastic sheets bend easily and, if they are patterned with cuts, can deform in sophisticated ways. Here we show that carefully tuning the location and arrangement of cuts within thin sheets enables the design of mechanical actuators that scale down to atomically-thin 2D materials. We first show that by understanding the mechanics of a single non-propagating crack in a sheet, we can generate four fundamental forms of linear actuation: roll, pitch, yaw, and lift. Our analytical model shows that these deformations are only weakly dependent on thickness, which we confirm with experiments on centimeter-scale objects and molecular dynamics simulations of graphene and MoS2 nanoscale sheets. We show how the interactions between non-propagating cracks can enable either lift or rotation, and we use a combination of experiments, theory, continuum computational analysis, and molecular dynamics simulations to provide mechanistic insights into the geometric and topological design of kirigami actuators.

8.
Eur Phys J E Soft Matter ; 38(8): 94, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26314259

ABSTRACT

When a microorganism begins swimming from rest in a Newtonian fluid such as water, it rapidly attains its steady-state swimming speed since changes in the velocity field spread quickly when the Reynolds number is small. However, swimming microorganisms are commonly found or studied in complex fluids. Because these fluids have long relaxation times, the time to attain the steady-state swimming speed can also be long. In this article we study the swimming startup problem in the simplest liquid crystalline fluid: a two-dimensional hexatic liquid crystal film. We study the dependence of startup time on anchoring strength and Ericksen number, which is the ratio of viscous to elastic stresses. For strong anchoring, the fluid flow starts up immediately but the liquid crystal field and swimming velocity attain their sinusoidal steady-state values after a time proportional to the relaxation time of the liquid crystal. When the Ericksen number is high, the behavior is the same as in the strong-anchoring case for any anchoring strength. We also find that the startup time increases with the ratio of the rotational viscosity to the shear viscosity, and then ultimately saturates once the rotational viscosity is much greater than the shear viscosity.


Subject(s)
Hydrodynamics , Liquid Crystals/chemistry , Models, Theoretical , Elasticity , Rotation , Viscosity
9.
Phys Rev Lett ; 109(11): 114301, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-23005633

ABSTRACT

Folding a sheet of paper along a curve can lead to structures seen in decorative art and utilitarian packing boxes. Here we present a theory for the simplest such structure: an annular circular strip that is folded along a central circular curve to form a three-dimensional buckled structure driven by geometrical frustration. We quantify this shape in terms of the radius of the circle, the dihedral angle of the fold, and the mechanical properties of the sheet of paper and the fold itself. When the sheet is isometrically deformed everywhere except along the fold itself, stiff folds result in creases with constant curvature and oscillatory torsion. However, relatively softer folds inherit the broken symmetry of the buckled shape with oscillatory curvature and torsion. Our asymptotic analysis of the isometrically deformed state is corroborated by numerical simulations that allow us to generalize our analysis to study structures with multiple curved creases.


Subject(s)
Models, Theoretical , Paper
SELECTION OF CITATIONS
SEARCH DETAIL
...