Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Ecotoxicology ; 30(10): 2071-2082, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34549369

ABSTRACT

Bioinsecticides based on Bacillus thuringiensis (Bt) Berliner, 1915 are widely used to control lepidopteran in several crops. However, surviving insects exposed to the sub-lethal concentration of Bt-based bioinsecticides can suffer a multitude of effects on the biological conditioning known as hormesis. Here, we aimed to provide a clearer understanding of the biological conditioning of Anticarsia gemmatalis (Hübner, 1818), exposed to different concentrations of a Bt-based bioinsecticide, by assessing life table parameters over three generations. We defined five sub-lethal concentrations (LC5, LC10, LC15, LC20, and LC25) from the response curve estimate of A. gemmatalis. Deionized water was used as a control. We assessed the parameters of eggs-viability and the duration of the stages, incubation, larval, pre-pupal, pupal, adult, pre-oviposition and total biological cycle. Data were used to construct the fertility life table using the two-sex program. The survival curves showed greater variation in the proportion of individuals at each development stage using the LC25. The sub-lethal concentrations did not influence the incubation-eggs period, pre-pupal and pupal. However, the larval and adult stages using LC25 and LC10 were the most affected. Changes in sex ratio were observed using LC20 and LC5. The toxic effect of Bt-based bioinsecticide interfered mainly in the parameters of fertility, sex ratio, net reproduction rate (R0), and gross reproduction rate (GRR).


Subject(s)
Bacillus thuringiensis , Moths , Animals , Bacillus thuringiensis Toxins , Female , Humans , Larva , Pupa
3.
Sci Rep ; 11(1): 6523, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33753776

ABSTRACT

Insecticidal double-stranded RNAs (dsRNAs) silence expression of vital genes by activating the RNA interference (RNAi) mechanism in insect cells. Despite high commercial interest in insecticidal dsRNA, information on resistance to dsRNA is scarce, particularly for dsRNA products with non-transgenic delivery (ex. foliar/topical application) nearing regulatory review. We report the development of the CEAS 300 population of Colorado potato beetle (Leptinotarsa decemlineata Say) (Coleoptera: Chrysomelidae) with > 11,100-fold resistance to a dsRNA targeting the V-ATPase subunit A gene after nine episodes of selection using non-transgenic delivery by foliar coating. Resistance was associated with lack of target gene down-regulation in CEAS 300 larvae and cross-resistance to another dsRNA target (COPI ß; Coatomer subunit beta). In contrast, CEAS 300 larvae showed very low (~ 4-fold) reduced susceptibility to the Cry3Aa insecticidal protein from Bacillus thuringiensis. Resistance to dsRNA in CEAS 300 is transmitted as an autosomal recessive trait and is polygenic. These data represent the first documented case of resistance in an insect pest with high pesticide resistance potential using dsRNA delivered through non-transgenic techniques. Information on the genetics of resistance and availability of dsRNA-resistant L. decemlineata guide the design of resistance management tools and allow research to identify resistance alleles and estimate resistance risks.


Subject(s)
Coleoptera/drug effects , Drug Resistance/genetics , Insecticides/pharmacology , RNA, Double-Stranded/pharmacology , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins/genetics , Bacillus thuringiensis Toxins/pharmacology , Coleoptera/genetics , Coleoptera/pathogenicity , Colorado , Endotoxins/genetics , Endotoxins/pharmacology , Hemolysin Proteins/genetics , Hemolysin Proteins/pharmacology , Insect Proteins/genetics , Larva/genetics , Larva/growth & development , RNA Interference , RNA, Double-Stranded/genetics , Solanum tuberosum/growth & development , Solanum tuberosum/parasitology
4.
Plant Dis ; 105(10): 2785-2791, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33560883

ABSTRACT

Viruses and viroids prevalent in a population of 42 wild grapevines (i.e., free-living, uncultivated grapevines; Vitis spp.) were compared with those in a population of 85 cultivated grapevines collected in Tennessee, United States by RNA sequencing analysis of pools of ribosomal RNA-depleted total RNA. The sequences of 10 viruses (grapevine fleck virus, grapevine leafroll-associated virus 2, grapevine rupestris stem pitting-associated virus, grapevine Syrah virus 1, grapevine vein-clearing virus, grapevine virus B, grapevine virus E, tobacco ringspot virus, tomato ringspot virus, and a novel nano-like virus) and two viroids (hop stunt viroid and grapevine yellow speckle viroid 1) were detected in both grapevine populations. Sequences of four viruses (grapevine associated tymo-like virus, grapevine leafroll-associated virus 3, grapevine red blotch virus, and grapevine virus H) were identified only from cultivated grapevines. High, moderate, and low numbers of sequence reads were identified only from wild grapevines for a novel caulimovirus, an enamovirus, and alfalfa mosaic virus, respectively. The presence of most virus sequences and both viroids was verified independently in the original samples by reverse-transcription PCR followed by Sanger sequencing. Comparison of viral sequences shared by both populations showed that cultivated and wild grapevines harbored distinct sequence variants, which suggests that there was limited virus movement between the two populations. Collectively, this study represents the first unbiased survey of viruses and viroids in both cultivated and wild grapevines within a defined geographic region.


Subject(s)
Plant Diseases/virology , Viroids , Vitis , RNA, Viral/genetics , Tennessee , Viroids/genetics , Viroids/pathogenicity , Vitis/virology
5.
Sci Rep ; 10(1): 4856, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32184426

ABSTRACT

Over the past few years, the use of RNA interference (RNAi) for insect pest management has attracted considerable interest in academia and industry as a pest-specific and environment-friendly strategy for pest control. For the success of this technique, the presence of core RNAi genes and a functional silencing machinery is essential. Therefore, the aim of this study was to test whether the Neotropical brown stinkbug Euschistus heros has the main RNAi core genes and whether the supply of dsRNA could generate an efficient gene silencing response. To do this, total mRNA of all developmental stages was sequenced on an Illumina platform, followed by a de novo assembly, gene annotation and RNAi-related gene identification. Once RNAi-related genes were identified, nuclease activities in hemolymph were investigated through an ex vivo assay. To test the functionality of the siRNA machinery, E. heros adults were microinjected with ~28 ng per mg of insect of a dsRNA targeting the V-ATPase-A gene. Mortality, relative transcript levels of V-ATPase-A, and the expression of the genes involved in the siRNA machinery, Dicer-2 (DCR-2) and Argonaute 2 (AGO-2), were analyzed. Transcriptome sequencing generated more than 126 million sequenced reads, and these were annotated in approximately 80,000 contigs. The search of RNAi-related genes resulted in 47 genes involved in the three major RNAi pathways, with the absence of sid-like homologous. Although ex vivo incubation of dsRNA in E. heros hemolymph showed rapid degradation, there was 35% mortality at 4 days after treatment and a significant reduction in V-ATPase-A gene expression. These results indicated that although sid-like genes are lacking, the dsRNA uptake mechanism was very efficient. Also, 2-fold and 4-fold overexpression of DCR-2 and AGO-2, respectively, after dsRNA supply indicated the activation of the siRNA machinery. Consequently, E. heros has proven to be sensitive to RNAi upon injection of dsRNA into its hemocoel. We believe that this finding together with a publically available transcriptome and the validation of a responsive RNAi machinery provide a starting point for future field applications against one of the most important soybean pests in South America.


Subject(s)
Gene Expression Profiling/veterinary , Hemiptera/growth & development , RNA, Small Interfering/genetics , Vacuolar Proton-Translocating ATPases/genetics , Animals , Gene Expression Regulation, Developmental , Hemiptera/genetics , High-Throughput Nucleotide Sequencing/veterinary , Insect Control , Insect Proteins/genetics , Molecular Sequence Annotation , Sequence Analysis, RNA/veterinary , South America
6.
Front Plant Sci ; 10: 1319, 2019.
Article in English | MEDLINE | ID: mdl-31708946

ABSTRACT

Since the discovery of RNA interference (RNAi), scientists have made significant progress towards the development of this unique technology for crop protection. The RNAi mechanism works at the mRNA level by exploiting a sequence-dependent mode of action with high target specificity due to the design of complementary dsRNA molecules, allowing growers to target pests more precisely compared to conventional agrochemicals. The delivery of RNAi through transgenic plants is now a reality with some products currently in the market. Conversely, it is also expected that more RNA-based products reach the market as non-transformative alternatives. For instance, topically applied dsRNA/siRNA (SIGS - Spray Induced Gene Silencing) has attracted attention due to its feasibility and low cost compared to transgenic plants. Once on the leaf surface, dsRNAs can move directly to target pest cells (e.g., insects or pathogens) or can be taken up indirectly by plant cells to then be transferred into the pest cells. Water-soluble formulations containing pesticidal dsRNA provide alternatives, especially in some cases where plant transformation is not possible or takes years and cost millions to be developed (e.g., perennial crops). The ever-growing understanding of the RNAi mechanism and its limitations has allowed scientists to develop non-transgenic approaches such as trunk injection, soaking, and irrigation. While the technology has been considered promising for pest management, some issues such as RNAi efficiency, dsRNA degradation, environmental risk assessments, and resistance evolution still need to be addressed. Here, our main goal is to review some possible strategies for non-transgenic delivery systems, addressing important issues related to the use of this technology.

7.
J Invertebr Pathol ; 168: 107255, 2019 11.
Article in English | MEDLINE | ID: mdl-31606356

ABSTRACT

Bacillus thuringiensis (Bt) biopesticides are an environmentally safe alternative to the management of Plutella xylostella pesticide resistance evolution. We evaluated P. xylostella susceptibility to six Bt strains cultivated and applied individually, and 15 combinations of Bt strains mixed after cultivation. Three combinations resulted in synergism and one in antagonism. Promising results of larval mortality with synergistic effects were obtained with the combinations Bt var. thuringiensis strain HD-2 + Bt finitimus strain HD-3, Bt var. thuringiensis strain HD-2 + Bt dendrolimus strain HD-7 and Bt var. thuringiensis strain HD-2 + Bt var. aizawai strain HD-11.


Subject(s)
Bacillus thuringiensis/pathogenicity , Endotoxins/pharmacology , Moths/microbiology , Animals , Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Biological Assay , Endotoxins/genetics , Genes, Bacterial , Insecticide Resistance , Larva/microbiology , Pest Control, Biological/methods
8.
Front Physiol ; 10: 794, 2019.
Article in English | MEDLINE | ID: mdl-31316391

ABSTRACT

RNA interference (RNAi) technology has been used in the development of approaches for pest control. The presence of some essential genes, the so-called "core genes," in the RNAi machinery is crucial for its efficiency and robust response in gene silencing. Thus, our study was designed to examine whether the RNAi machinery is functional in the South American (SA) fruit fly Anastrepha fraterculus (Diptera: Tephritidae) and whether the sensitivity to the uptake of double-stranded RNA (dsRNA) could generate an RNAi response in this fruit fly species. To prepare a transcriptome database of the SA fruit fly, total RNA was extracted from all the life stages for later cDNA synthesis and Illumina sequencing. After the de novo transcriptome assembly and gene annotation, the transcriptome was screened for RNAi pathway genes, as well as the duplication or loss of genes and novel target genes to dsRNA delivery bioassays. The dsRNA delivery assay by soaking was performed in larvae to evaluate the gene-silencing of V-ATPase, and the upregulation of Dicer-2 and Argonaute-2 after dsRNA delivery was analyzed to verify the activation of siRNAi machinery. We tested the stability of dsRNA using dsGFP with an in vitro incubation of larvae body fluid (hemolymph). We identified 55 genes related to the RNAi machinery with duplication and loss for some genes and selected 143 different target genes related to biological processes involved in post-embryonic growth/development and reproduction of A. fraterculus. Larvae soaked in dsRNA (dsV-ATPase) solution showed a strong knockdown of V-ATPase after 48 h, and the expression of Dicer-2 and Argonaute-2 responded with an increase upon the exposure to dsRNA. Our data demonstrated the existence of a functional RNAi machinery in the SA fruit fly, and we present an easy and robust physiological bioassay with the larval stages that can further be used for screening of target genes at in vivo organisms' level for RNAi-based control of fruit fly pests. This is the first study that provides evidence of a functional siRNA machinery in the SA fruit fly.

SELECTION OF CITATIONS
SEARCH DETAIL
...