Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 12(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38003769

ABSTRACT

Amblyomma sculptum is a relevant tick species from a One Health perspective, playing an important role as a vector of Rickettsia rickettsii, the main agent of spotted fever rickettsiosis in Brazil. In this study, we evaluated the susceptibility of two A. sculptum populations from Goiás state (midwestern Brazil) to different acaricides. The first tick population (GYN strain) originated from an experimental farm, where the ticks are annually exposed to acaricides. The second (PNE strain) was collected in a national park (Emas National Park), where the ticks had not been exposed to acaricides. Immersion tests were conducted with 21-day-old laboratory-reared larvae and nymphs originating from adult ticks collected in the areas mentioned above. The chosen acaricides were two synthetic pyrethroids (cypermethrin and deltamethrin), one organophosphate (chlorfenvinphos), one formamidine (amitraz), and two combinations of pyrethroids and organophosphates (cypermethrin, chlorpyrifos and citronellal; cypermethrin, fenthion and chlorpyrifos). Mortality data were used to determine the lethal concentration (LC) values at which 50%, 90%, and 99% of the ticks died (LC50, LC90, and LC99, respectively), and resistance ratios (RR) were calculated based on the LC values. The RR revealed differences between the acaricide-exposed (GYN) and unexposed (PNE) tick strains. The PNE strain larvae and nymphs were susceptible to all the tested acaricides. The GYN strain larvae were tolerant to cypermethrin, whereas the nymphs were tolerant to deltamethrin, chlorfenvinphos, and the combination of cypermethrin, chlorpyrifos, and citronellal (2 < RR ≤ 10). The GYN strain nymphs were resistant to amitraz (RR > 10). This is the first report of A. sculptum nymphs with resistance to amitraz and tolerance to deltamethrin, chlorfenvinphos, and the combination of cypermethrin, chlorpyrifos, and citronellal.

2.
Microorganisms ; 11(8)2023 Aug 06.
Article in English | MEDLINE | ID: mdl-37630582

ABSTRACT

Piroplasmids (order Piroplasmida) are a diverse group of tick-borne protozoa that may cause disease in animals and occasionally in humans. Novel Piroplasmida clades and species have been found in wild animals from Brazil based on the phylogenetic assessment of near-complete 18S rRNA, mitochondrial and heat-shock protein genes. For instance, a putative novel Babesia species has been detected in capybaras and Amblyomma ticks in three Brazilian states. The present work aimed to describe, using phylogenetic assessments based on distinct molecular markers, this novel Babesia species in capybaras and associated ticks (Amblyomma sculptum and Amblyomma dubitatum) sampled in Goiânia city, Goiás state, midwestern Brazil. While the phylogenetic analysis based on both near-complete 18S rRNA and hsp-70 genes positioned the sequences obtained from capybara blood samples into a new clade sister to the Babesia sensu stricto clade, the phylogenetic inference based on the COX-3 amino acid positioned the obtained sequences from capybara blood samples and A. sculptum ticks also into a clade sister to the Theileria sensu stricto clade, highlighting the inappropriateness of this marker inferring evolutionary relationships among piroplasmids. Pairwise distance analysis demonstrated that the divergence rates between the 18S rRNA sequences detected in capybaras and other Piroplasmida already described were very high and ranged from 9.4 to 12.9%. Genotype analysis based on the near-full 18S rRNA sequences of the Piroplasmida detected in capybaras and associated ticks demonstrated the occurrence of high genotype diversity at an intra-species level. In conclusion, phylogenetic analyses based on distinct molecular markers supported the description of Babesia goianiaensis nov. sp. in capybaras and associated Amblyomma ticks. Additionally, a novel phylogenetic clade, apart from the previously described ones, was described in the present study and contributed to untangling the complex evolutionary history of the Piroplasmida.

3.
Animals (Basel) ; 13(8)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37106851

ABSTRACT

Brazilian spotted fever (BSF) is the most important tick-borne diseases affecting humans in Brazil. Cases of BSF have recently been reported in the Goiás state, midwestern Brazil. All cases have been confirmed by reference laboratories by seroconversion to Rickettsia rickettsii antigens. Because serological cross-reactions among different rickettsial species that belong to the spotted fever group (SFG) are common, the agent responsible for BSF cases in Goiás remains unknown. From March 2020 to April 2022, ticks and plasma were collected from dogs, horses and capybaras (Hydrochoerus hydrochaeris), and from the vegetation in an area where BSF cases have been reported and two areas under epidemiological surveillance in Goiás. Horses were infested by Amblyomma sculptum, Dermacentor nitens and Rhipicephalus microplus; dogs by Rhipicephalus sanguineus sensu lato (s.l.), Amblyomma ovale and A. sculptum, and capybaras by A. sculptum and Amblyomma dubitatum. Adults of A. sculptum, A. dubitatum, Amblyomma rotundatum and immature stages of A. sculptum and A. dubitatum, and Amblyomma spp. were collected from the vegetation. DNA of Rickettsia that did not belong to the SFG was detected in A. dubitatum, which was identified by DNA sequencing as Rickettsia bellii. Seroreactivity to SFG and Rickettsia bellii antigens was detected in 25.4% (42/165) of dogs, 22.7% (10/44) of horses and 41.2% (7/17) of capybaras, with higher titers for R. bellii in dogs and capybaras. The seropositivity of animals to SFG Rickettsia spp. antigens demonstrates the circulation of SFG rickettsiae in the region. Further research is needed to fully determine the agent responsible for rickettsiosis cases in this area.

4.
Animals (Basel) ; 13(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36611703

ABSTRACT

Capybaras (Hydrochoerus hydrochaeris) are the largest rodents on Earth. While capybaras are hosts for various tick species, there is limited information regarding the tick-borne pathogens they can carry. We investigated the presence of piroplasmids and Ehrlichia spp. in capybaras and their associated ticks in two peri-urban areas in Goiás state, central-western Brazil. Blood samples collected from 23 capybaras were used to investigate the presence of piroplasmids and Ehrlichia spp. in stained-blood smears and by PCR. Ticks collected from the capybaras were identified morphologically and also tested using PCR for the same pathogens. A total of 955 ticks were collected, including 822 (86.1%) Amblyomma sculptum, 132 (13.8%) Amblyomma dubitatum, and one (0.1%) unidentified larva of Amblyomma sp. Neither the capybaras nor ticks were positive for Ehrlichia spp. However, a stained-blood smear examination revealed the presence of ring-stage and pyriform-shaped merozoites in the erythrocytes of one (4.4%) capybara. In the same way, 47.8% (11/23) and 19.9% (36/181) of blood samples and ticks, respectively, were positive for piroplasmids in the PCR. We successfully sequenced a partial 18S rRNA gene fragment of four samples (two capybaras, one A. sculptum, and one A. dubitatum), and the phylogenetic reconstruction disclosed that the organism reported in the present study clusters within the genus Babesia. Further research is required for a formal delineation of this species (designated as Babesia sp. strain Capybara) and to investigate the hypothesis of A. dubitatum and A. sculptum ticks being vectors.

SELECTION OF CITATIONS
SEARCH DETAIL
...