Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cheminform ; 13(1): 29, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33858509

ABSTRACT

Quantitative structure activity relationships (QSAR) modelling is a well-known computational tool, often used in a wide variety of applications. Yet one of the major drawbacks of conventional QSAR modelling is that models are set up based on a limited number of experimental and/or theoretical conditions. To overcome this, the so-called multitasking or multitarget QSAR (mt-QSAR) approaches have emerged as new computational tools able to integrate diverse chemical and biological data into a single model equation, thus extending and improving the reliability of this type of modelling. We have developed QSAR-Co-X, an open source python-based toolkit (available to download at https://github.com/ncordeirfcup/QSAR-Co-X ) for supporting mt-QSAR modelling following the Box-Jenkins moving average approach. The new toolkit embodies several functionalities for dataset selection and curation plus computation of descriptors, for setting up linear and non-linear models, as well as for a comprehensive results analysis. The workflow within this toolkit is guided by a cohort of multiple statistical parameters and graphical outputs onwards assessing both the predictivity and the robustness of the derived mt-QSAR models. To monitor and demonstrate the functionalities of the designed toolkit, four case-studies pertaining to previously reported datasets are examined here. We believe that this new toolkit, along with our previously launched QSAR-Co code, will significantly contribute to make mt-QSAR modelling widely and routinely applicable.

2.
Curr Med Chem ; 27(5): 697-718, 2020.
Article in English | MEDLINE | ID: mdl-30378482

ABSTRACT

Leishmaniasis and trypanosomiasis occur primarily in undeveloped countries and account for millions of deaths and disability-adjusted life years. Limited therapeutic options, high toxicity of chemotherapeutic drugs and the emergence of drug resistance associated with these diseases demand urgent development of novel therapeutic agents for the treatment of these dreadful diseases. In the last decades, different in silico methods have been successfully implemented for supporting the lengthy and expensive drug discovery process. In the current review, we discuss recent advances pertaining to in silico analyses towards lead identification, lead modification and target identification of antileishmaniasis and anti-trypanosomiasis agents. We describe recent applications of some important in silico approaches, such as 2D-QSAR, 3D-QSAR, pharmacophore mapping, molecular docking, and so forth, with the aim of understanding the utility of these techniques for the design of novel therapeutic anti-parasitic agents. This review focuses on: (a) advanced computational drug design options; (b) diverse methodologies - e.g.: use of machine learning tools, software solutions, and web-platforms; (c) recent applications and advances in the last five years; (d) experimental validations of in silico predictions; (e) virtual screening tools; and (f) rationale or justification for the selection of these in silico methods.


Subject(s)
Leishmaniasis , Trypanosomiasis , Computer Simulation , Drug Design , Humans , Leishmaniasis/drug therapy , Molecular Docking Simulation , Quantitative Structure-Activity Relationship , Trypanosomiasis/drug therapy
3.
ACS Comb Sci ; 19(8): 501-512, 2017 08 14.
Article in English | MEDLINE | ID: mdl-28437091

ABSTRACT

Hepatitis C constitutes an unresolved global health problem. This infectious disease is caused by the hepatotropic hepatitis C virus (HCV), and it can lead to the occurrence of life-threatening medical conditions, such as cirrhosis and liver cancer. Nowadays, major clinical concerns have arisen because of the appearance of multidrug resistance (MDR) and the side effects especially associated with long-term treatments. In this work, we report the first multitasking model for quantitative structure-biological effect relationships (mtk-QSBER), focused on the simultaneous exploration of anti-HCV activity and in vitro safety profiles related to the absorption, distribution, metabolism, elimination, and toxicity (ADMET). The mtk-QSBER model was created from a data set formed by 40 158 cases, displaying accuracy higher than 95% in both training and prediction (test) sets. Several molecular fragments were selected, and their quantitative contributions to anti-HCV activity and ADMET profiles were calculated. By combining the analysis of the fragments with positive contributions and the physicochemical meanings of the different molecular descriptors in the mtk-QSBER, six new molecules were designed. These new molecules were predicted to exhibit potent anti-HCV activity and desirable in vitro ADMET properties. In addition, the designed molecules have good druglikeness according to the Lipinski's rule of five and its variants.


Subject(s)
Antiviral Agents/chemistry , Computer Simulation , Drug Discovery/methods , Hepacivirus/drug effects , Hepatitis C/drug therapy , Quantitative Structure-Activity Relationship , Antiviral Agents/pharmacokinetics , Antiviral Agents/toxicity , Drug Resistance, Multiple, Viral , Models, Biological , Protein Binding , Quantum Theory , Thermodynamics
4.
ACS Comb Sci ; 18(8): 490-8, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27280735

ABSTRACT

Antimicrobial peptides (AMPs) represent promising alternatives to fight against bacterial pathogens. However, cellular toxicity remains one of the main concerns in the early development of peptide-based drugs. This work introduces the first multitasking (mtk) computational model focused on performing simultaneous predictions of antibacterial activities, and cytotoxicities of peptides. The model was created from a data set containing 3592 cases, and it displayed accuracy higher than 96% for classifying/predicting peptides in both training and prediction (test) sets. The technique known as alanine scanning was computationally applied to illustrate the calculation of the quantitative contributions of the amino acids (in their respective positions of the sequence) to the biological effects of a defined peptide. A small library formed by 10 peptides was generated, where peptides were designed by considering the interpretations of the different descriptors in the mtk-computational model. All the peptides were predicted to exhibit high antibacterial activities against multiple bacterial strains, and low cytotoxicity against various cell types. The present mtk-computational model can be considered a very useful tool to support high throughput research for the discovery of potent and safe AMPs.


Subject(s)
Anti-Bacterial Agents/chemistry , Peptides/chemistry , Amino Acids/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Cell Line , Drug Discovery , Gram-Negative Bacteria/drug effects , High-Throughput Screening Assays , Humans , Mice , Molecular Structure , Peptides/pharmacology , Peptides/toxicity , Quantitative Structure-Activity Relationship , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...