Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 21(3): e202301508, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38092696

ABSTRACT

Dillenia indica (Linn.) has been reported by several biological activities, including anti-inflammatory, antioxidant, antidiabetic, anti-hyperglycemic, antiproliferative, antimutagenic, anticholinesterase, and antimicrobial. In Brazilian traditional medicine, the fruits of D. indica have been used to treat general topical pain and inflammation, but with no scientific validation. Thus, aiming to study its chemical constitution and antinociceptive properties, the crude extract (CE) and fractions obtained from the fruits of D. indica were submitted to an in vivo pharmacological evaluation and a dereplication study by LC-MS/MS analysis, assisted by the Global Natural Product Social Molecular Networking (GNPS). The oral antinociceptive activity of the fruits of D. indica and the possible participation of the opioid and cannabinoid systems were demonstrated in the formalin-induced nociception model. The chemical dereplication study led us to identify several known chemical constituents, including flavonoids, such as caffeoylmalic acid, naringenin, quercetin, and kaempferol. According to literature data, our results are compatible with significant antinociceptive and anti-inflammatory activities. Therefore, the flavonoid constituents of the fruits of D. indica are probably responsible for its antioxidant, anti-inflammatory, and antinociceptive effects mediated by both opioid and cannabinoid systems, confirming its folk use in the treatment and relief of pain.


Subject(s)
Analgesics , Dilleniaceae , Analgesics/chemistry , Analgesics, Opioid/adverse effects , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Chromatography, Liquid , Tandem Mass Spectrometry , Anti-Inflammatory Agents/pharmacology , Pain/drug therapy , Flavonoids/therapeutic use
2.
Curr Drug Targets ; 22(5): 505-538, 2021.
Article in English | MEDLINE | ID: mdl-32814524

ABSTRACT

We describe herein the therapeutic targets involved in Alzheimer's disease as well as the available drugs and their synthetic routes. Bioactive compounds under development are also exploited to illustrate some recent research advances on the medicinal chemistry of Alzheimer's disease, including structure-activity relationships for some targets. The importance of multi-target approaches, including some examples from our research projects, guides new perspectives in search of more effective drug candidates. This review comprises the period between 2001 and early 2020.


Subject(s)
Alzheimer Disease , Pharmaceutical Preparations , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/pharmacology , Humans , Ligands , Structure-Activity Relationship
3.
Eur J Med Chem ; 147: 48-65, 2018 Mar 10.
Article in English | MEDLINE | ID: mdl-29421570

ABSTRACT

A new series of sixteen multifunctional N-benzyl-piperidine-aryl-acylhydrazones hybrid derivatives was synthesized and evaluated for multi-target activities related to Alzheimer's disease (AD). The molecular hybridization approach was based on the combination, in a single molecule, of the pharmacophoric N-benzyl-piperidine subunit of donepezil, the substituted hydroxy-piperidine fragment of the AChE inhibitor LASSBio-767, and an acylhydrazone linker, a privileged structure present in a number of synthetic aryl- and aryl-acylhydrazone derivatives with significant AChE and anti-inflammatory activities. Among them, compounds 4c, 4d, 4g and 4j presented the best AChE inhibitory activities, but only compounds 4c and 4g exhibited concurrent anti-inflammatory activity in vitro and in vivo, against amyloid beta oligomer (AßO) induced neuroinflammation. Compound 4c also showed the best in vitro and in vivo neuroprotective effects against AßO-induced neurodegeneration. In addition, compound 4c showed a similar binding mode to donepezil in both acetylated and free forms of AChE enzyme in molecular docking studies and did not show relevant toxic effects on in vitro and in vivo assays, with good predicted ADME parameters in silico. Overall, all these results highlighted compound 4c as a promising and innovative multi-target drug prototype candidate for AD treatment.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cholinesterase Inhibitors/pharmacology , Drug Discovery , Hydrazones/pharmacology , Indans/pharmacology , Neuroprotective Agents/pharmacology , Piperidines/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Donepezil , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Hydrazones/chemistry , Indans/chemical synthesis , Indans/chemistry , Models, Molecular , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Piperidines/chemical synthesis , Piperidines/chemistry , Structure-Activity Relationship
4.
Mini Rev Med Chem ; 14(1): 2-19, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24251806

ABSTRACT

Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disorder, with a dramatic socioeconomic impact. The progress of AD is characterized by a severe loss in memory and cognition, leading to behavioral changing, depression and death. During the last decades, only a few anticholinergic drugs were launched in the market, mainly acetylcholinesterase inhibitors (AChEIs), with indications for the treatment of initial and moderate stages of AD. The search for new AChEIs, capable to overcome the limitations observed for rivastigmine and tacrine, led Sugimoto and co-workers to the discovery of donepezil. Besides its high potency, donepezil also exhibited high selectivity for AChE and a very low toxicity. In this review, we discuss the main structural and pharmacological attributes that have made donepezil the first choice medicine for AD, and a versatile structural model for the design of novel AChEIs, in spite of multipotent and multitarget-directed ligands. Many recent data from literature transdue great efforts worldwide to produce modifications in the donepezil structure that could result in new bioactive chemical entities with innovative structural pattern. Furthermore, multi-potent ligands have also been designed by molecular hybridization, affording rivastigmine-, tacrine- and huperzine-donepezil potent and selective AChEIs. In a more recent strategy, structural features of donepezil have been used as a model to design multitarget-directed ligands, aiming at the discovery of new effective drug candidates that could exhibit concomitant pharmacological activities as dual or multi- enzymatic inhibitors as genuine innovative therapeutic alternatives for the treatment of AD.


Subject(s)
Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/pharmacology , Drug Design , Indans/pharmacology , Piperidines/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/enzymology , Animals , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Donepezil , Humans , Indans/chemical synthesis , Indans/chemistry , Models, Molecular , Molecular Structure , Piperidines/chemical synthesis , Piperidines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...