Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 18(10): e0291797, 2023.
Article in English | MEDLINE | ID: mdl-37792706

ABSTRACT

Morphological, molecular and chromosomal studies in the genera Lonchothrix and Mesomys have contributed to a better understanding of taxonomic design, phylogenetic relationships and karyotypic patterns. Recent molecular investigations have shown a yet undescribed diversity, suggesting that these taxa are even more diverse than previously assumed. Furthermore, some authors have questioned the limits of geographic distribution in the Amazon region for the species M. hispidus and M. stimulax. In this sense, the current study sought to understand the karyotypic evolution and geographic limits of the genus Mesomys, based on classical (G- and C-banding) and molecular cytogenetic analysis (FISH using rDNA 18S and telomeric probes) and through the sequencing of mitochondrial genes Cytochrome b (Cytb) and Cytochrome Oxidase-Subunit I (CO using phylogeny, species delimitation and time of divergence, from samples of different locations in the Brazilian Amazon. The species M. stimulax and Mesomys sp. presented 2n = 60/FN = 110, while M. hispidus presented 2n = 60/FN = 112, hitherto unpublished. Molecular dating showed that Mesomys diversification occurred during the Plio-Pleistocene period, with M. occultus diverging at around 5.1 Ma, followed by Mesomys sp. (4.1 Ma) and, more recently, the separation between M. hispidus and M. stimulax (3.5 Ma). The ABGD and ASAP species delimiters support the formation of 7 and 8 potential species of the genus Mesomys, respectively. Furthermore, in both analyzes Mesomys sp. was recovered as a valid species. Our multidisciplinary approach involving karyotypic, molecular and biogeographic analysis is the first performed in Mesomys, with the description of a new karyotype for M. hispidus, a new independent lineage for the genus and new distribution data for M. hispidus and M. stimulax.


Subject(s)
Genetic Variation , Rodentia , Animals , Rodentia/genetics , Brazil , Phylogeny , Karyotype
2.
PLoS One ; 14(4): e0215239, 2019.
Article in English | MEDLINE | ID: mdl-30990834

ABSTRACT

The taxonomic identification of Lonchothrix emiliae (Rodentia, Echimyidae, Eumysopinae) is problematic because of the overlap of morphological characters with its sister clade represented by species in the genus Mesomys which, like L. emiliae, is distributed throughout the Amazonian biome. Cytogenetic studies reported the karyotype of L. emiliae as 2n = 60/FN = 116, but this karyotype and samples were later designated as M. hispidus. To evaluate the karyotype diversity of Lonchothrix and Mesomys, and to provide data useful as karyological diagnostic characters, in the present study we made a comparative analysis of specimens of L. emiliae and M. stimulax collected from two Brazilian Amazonian localities, using C-banding, G-banding, FISH using rDNA 45S and telomeric probes, and Cytochrome-b (Cytb) sequences. The results indicate that L. emiliae has 2n = 64♀, 65♂/FN = 124 and a multiple sexual system (XX/XY1Y2), while M. stimulax has 2n = 60/FN = 116. The Neo-X system found in L. emiliae also occurs in two Proechimys species, but cytogenetic analysis indicated an independent origin for these systems. The rDNA 45S analysis showed interstitial signals at one autosomal pair for each species, while an ITS found in L. emiliae was not coincident with the NOR. The molecular analysis confirmed Lonchothrix and Mesomys are sister genera, and the high level of intraspecific genetic divergence (7.1%) in M. stimulax suggests that it may be a species complex.


Subject(s)
Chromosome Banding , Cytochromes b/genetics , Karyotyping , Rodentia/classification , Rodentia/genetics , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...