Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Biosci Rep ; 44(6)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38757914

ABSTRACT

Surgeries that require general anesthesia occur in 1.5-2% of gestations. Isoflurane is frequently used because of its lower possibility of affecting fetal growth. Therefore, we examined the isoflurane anesthesia-induced effects on maternal hemodynamic and vascular changes. We hypothesized that isoflurane would enhance endothelium-dependent vasodilation as a consequence of increased nitric oxide and decreased metalloproteinases (MMPs). Female rats (n=28) were randomized into 4 groups (7 rats/group): conscious (non-anesthetized) non-pregnant group, non-pregnant anesthetized group, conscious pregnant group, and pregnant anesthetized group. Anesthesia was performed on the 20th pregnancy day, and hemodynamic parameters were monitored. Nitric oxide metabolites, gelatinolytic activity of MMP-2 and MMP-9, and the vascular function were assessed. Isoflurane caused no significant hemodynamic changes in pregnant compared with non-pregnant anesthetized group. Impaired acetylcholine-induced relaxations were observed only in conscious non-pregnant group (by approximately 62%) versus 81% for other groups. Phenylephrine-induced contractions were greater in endothelium-removed aorta segments of both pregnant groups (with or without isoflurane) compared with non-pregnant groups. Higher nitric oxide metabolites were observed in anesthetized pregnant in comparison with the other groups. Reductions in the 75 kDa activity and concomitant increases in 64 kDa MMP-2 isoforms were observed in aortas of pregnant anesthetized (or not) groups compared with conscious non-pregnant group. Isoflurane anesthesia shows stable effects on hemodynamic parameters and normal MMP-2 activation in pregnancy. Furthermore, there were increases in nitric oxide bioavailability, suggesting that isoflurane provides protective actions to the endothelium in pregnancy.


Subject(s)
Isoflurane , Matrix Metalloproteinase 2 , Nitric Oxide , Vasodilation , Animals , Female , Pregnancy , Rats , Anesthetics, Inhalation/pharmacology , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Hemodynamics/drug effects , Isoflurane/pharmacology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Nitric Oxide/metabolism , Vasodilation/drug effects , Rats, Wistar
2.
Fundam Clin Pharmacol ; 37(5): 937-946, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37085979

ABSTRACT

Volatile anesthetics may cause vascular dysfunction; however, underlying effects are unclear. The aim of the present study was to investigate whether sevoflurane and isoflurane affect vascular function, nitric oxide (NO) bioavailability, and biomarkers of oxidative stress and inflammation. Wistar rats were divided into three experimental groups: Not anesthetized (control group) or submitted to anesthesia with isoflurane (Iso group) or sevoflurane (Sevo group). Hemodynamic parameters were monitored during anesthesia, and blood gas values and biochemical determinants were analyzed. Isometric contractions were recorded in aortic rings. Vasoconstriction induced by potassium chloride (KCl) and phenylephrine (Phe) were measured. No differences in hemodynamic parameters and blood gasses variables were observed. Impaired KCl and Phe-induced contractions were observed in endothelium-intact aorta of Sevo compared to Iso and Control groups. Redox imbalance was found in Sevo and Iso groups. Reduced NO bioavailability and increased activity of matrix metalloproteinase 2 (MMP-2) were observed in Sevo, but not in the Iso group. While reduced IL-10 and IL-1ß were observed in Sevo, increases in IL-1ß in the Iso group were found. Sevoflurane, but not isoflurane, anesthesia impairs vasocontraction, and reduced NO and cytokines and increased MMP-2 activity may be involved in vascular dysfunction after sevoflurane anesthesia.


Subject(s)
Anesthesia , Anesthetics, Inhalation , Isoflurane , Methyl Ethers , Rats , Animals , Isoflurane/toxicity , Sevoflurane , Matrix Metalloproteinase 2 , Methyl Ethers/toxicity , Anesthetics, Inhalation/toxicity , Rats, Wistar
3.
J Cardiovasc Pharmacol ; 76(6): 715-729, 2020 12.
Article in English | MEDLINE | ID: mdl-32976209

ABSTRACT

Perivascular adipose tissue (PVAT) modulates the vascular tone. Hydrogen sulfide (H2S) is synthetized by cystathionine gamma-lyase (CSE) in brown PVAT. Modulation of vascular contractility by H2S is, in part, adenosine triphosphate (ATP)-sensitive potassium channels dependent. However, the role of PVAT-derived H2S in hypertensive pregnancy (HTN-Preg) is unclear. Therefore, we aimed to examine the involvement of H2S in the anticontractile effect of PVAT in aortae from normotensive and hypertensive pregnant rats. To this end, phenylephrine-induced contractions in the presence and absence of PVAT and endothelium in aortae from normotensive pregnant (Norm-Preg) and HTN-Preg rats were investigated. Maternal blood pressure, fetal-placental parameters, angiogenesis-related biomarkers, and H2S levels were also assessed. We found that circulating H2S is elevated in hypertensive pregnancy associated with angiogenic imbalance, fetal and placental growth restrictions, which revealed that there is H2S pathway activation. Moreover, under stimulated H2S formation PVAT, but not endothelium, reduced phenylephrine-induced contractions in aortae from HTN-Preg rats. Also, H2S synthesis inhibitor abolished anticontractile effects of PVAT and endothelium. Furthermore, anticontractile effect of PVAT, but not of endothelium, was eliminated by ATP-sensitive potassium channels blocker. In accordance, increases in H2S levels in PVAT and placenta, but not in aortae without PVAT, were also observed. In conclusion, anticontractile effect of PVAT is lost, at least in part, in HTN-Preg aortae and PVAT effect is ATP-sensitive potassium channels dependent in normotensive and hypertensive pregnant rat aortae. PVAT but not endothelium is responsive to the H2S stimulation in hypertensive pregnant rat aortae, implying a key role for PVAT-derived H2S under endothelial dysfunction.


Subject(s)
Adipose Tissue/metabolism , Aorta, Thoracic/metabolism , Endothelium, Vascular/metabolism , Hydrogen Sulfide/metabolism , Hypertension, Pregnancy-Induced/metabolism , Vasoconstriction , Adaptation, Physiological , Adipose Tissue/physiopathology , Animals , Aorta, Thoracic/physiopathology , Desoxycorticosterone Acetate , Disease Models, Animal , Endothelium, Vascular/physiopathology , Female , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/physiopathology , Hypertension, Pregnancy-Induced/etiology , Hypertension, Pregnancy-Induced/physiopathology , KATP Channels/metabolism , Pregnancy , Rats, Wistar , Signal Transduction , Sodium Chloride, Dietary , Up-Regulation
4.
Cells ; 8(11)2019 11 07.
Article in English | MEDLINE | ID: mdl-31703340

ABSTRACT

Hypertensive pregnancy has been associated with reduced nitric oxide (NO), bioavailability, and increased activity of matrix metalloproteinases (MMPs). However, it is unclear if MMPs activation is regulated by NO during pregnancy. To this end, we examined activity of MMP-2 and MMP-9 in plasma, placenta, uterus and aorta, NO bioavailability, oxidative stress, systolic blood pressure (SBP), and fetal-placental development at the early, middle, and late pregnancy stages in normotensive and Nω-Nitro-L-arginine methyl-ester (L-NAME)-induced hypertensive pregnancy in rats. Reduced MMP-2 activity in uterus, placenta, and aorta and reduced MMP-9 activity in plasma and placenta with concomitant increased NO levels were found in normotensive pregnant rats. By contrast, increased MMP-2 activity in uterus, placenta, and aorta, and increased MMP-9 activity in plasma and placenta with concomitant reduced NO levels were observed in hypertensive pregnant rats. Also, elevated oxidative stress was displayed by hypertensive pregnant rats at the middle and late stages. These findings in the L-NAME-treated pregnant rats were also followed by increases in SBP and associated with fetal growth restrictions at the middle and late pregnancy stages. We concluded that NO bioavailability may regulate MMPs activation during normal and hypertensive pregnancy.


Subject(s)
Hypertension/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Nitric Oxide/blood , Pregnancy Complications, Cardiovascular/metabolism , Animals , Biomarkers , Blood Pressure/drug effects , Enzyme Activation , Female , Gestational Age , Hypertension/blood , Hypertension/diagnosis , Hypertension/drug therapy , Lipid Metabolism/drug effects , Lipid Peroxidation , Matrix Metalloproteinase 2/blood , Matrix Metalloproteinase 9/blood , NG-Nitroarginine Methyl Ester/pharmacology , Oxidative Stress , Pregnancy , Pregnancy Complications, Cardiovascular/blood , Pregnancy Complications, Cardiovascular/etiology , Rats
5.
Basic Clin Pharmacol Toxicol ; 124(4): 385-393, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30318719

ABSTRACT

Pre-eclampsia and hypertensive disorders of pregnancy are frequently associated with foeto-placental growth restriction, and that may be triggered by angiogenic imbalance and endothelial dysfunction. Impaired nitric oxide (NO) bioavailability seems to be involved in these pathophysiological changes observed in hypertensive pregnancy. Pravastatin has shown efficacy and to be safe during hypertension in pregnancy. However, NO involvement in pravastatin effects during maternal hypertension and foeto-placental development is unclear. Therefore, we aimed to examine pravastatin effects on placental NO formation, endothelium-dependent vasodilation, systolic blood pressure and foeto-placental development in hypertensive pregnant rats. Biochemical determinants of angiogenesis and oxidative stress were also assessed. Pregnant rats were distributed into four groups: normal pregnancy (Norm-Preg), pregnancy+pravastatin (Preg-Prava), hypertensive pregnancy (HTN-Preg) and hypertensive pregnancy+pravastatin (HTN-Preg+Prava). Our results showed that pravastatin treatment blunts hypertension and foeto-placental growth restriction. Also, increases in placental NO levels were found in the HTN-Preg+Prava group. Pravastatin prevents impaired endothelium-dependent acetylcholine-induced vasodilation, exacerbated contractile response to phenylephrine and increases in oxidative stress in the HTN-Preg+Prava group. Increased soluble fms-like tyrosine kinase-1-to-placental growth factor (sFlt-1/PlGF) ratio is reversed by pravastatin treatment in the HTN-Preg+Prava group. We conclude that NO formation and endothelium-dependent vasodilation underlie pleiotropic effects associated with pravastatin treatment against hypertension in pregnancy, intrauterine growth restriction, vascular dysfunction and angiogenic imbalance.


Subject(s)
Hypertension, Pregnancy-Induced/drug therapy , Oxidative Stress/drug effects , Placenta/drug effects , Pravastatin/pharmacology , Animals , Blood Pressure/drug effects , Disease Models, Animal , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Female , Fetal Growth Retardation/prevention & control , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hypertension, Pregnancy-Induced/physiopathology , Neovascularization, Physiologic/drug effects , Nitric Oxide/metabolism , Placenta/metabolism , Pre-Eclampsia/drug therapy , Pre-Eclampsia/physiopathology , Pregnancy , Rats , Rats, Wistar , Vasodilation/drug effects
6.
Eur J Pharmacol ; 840: 60-69, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30336141

ABSTRACT

Preeclampsia is manifested as maternal hypertension and fetal growth restriction. Matrix metalloproteinases (MMPs) are involved in hypertension and doxycycline reduces blood pressure by inhibition of MMPs. Moreover, excessive levels of MMPs and reduced nitric oxide (NO) bioavailability have been related to preeclampsia. We investigated the involvement of MMPs in hypertension in pregnancy induced by Nω-Nitro-L-arginine methyl ester (L-NAME) in rats. To this end, zimography was performed to evaluate the activity of MMPs -2 and -9 in placenta, uterus and thoracic aorta, and systolic blood pressure, feto-placental development and metabolites of NO were evaluated. Also, plasma antioxidant capacity, plasma levels of soluble fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PLGF) were examined. Doxycycline prevented hypertensive pregnancy and significant reductions in number of pups induced by L-NAME. Low NO bioavailability was found in hypertensive pregnant rats treated (or not) with doxycycline. Increased activity of placental MMP-2 and MMP-9 and uterine MMP-2 were attenuated by doxycycline. MMP-2 activity of thoracic aorta showed no change after hypertension. Increases in PLGF with concomitant decreases in sFlt-1 levels were found with doxycycline treatment. Also, plasma antioxidant capacity was improved with doxycycline. Also, elevations of plasma antioxidant capacity were observed in hypertensive rats treated with doxycycline. Therefore, we suggest that L-NAME reduced NO and this triggered the increases in MMP-2 and -9 activities during hypertensive pregnancy. Importantly, increases in MMPs activation and angiogenic imbalance were attenuated by doxycycline and these effects were associated with decreases in systolic blood pressure.


Subject(s)
Doxycycline/pharmacology , Hypertension, Pregnancy-Induced/drug therapy , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Neovascularization, Physiologic/drug effects , Animals , Antioxidants/metabolism , Doxycycline/therapeutic use , Female , Hypertension, Pregnancy-Induced/enzymology , Hypertension, Pregnancy-Induced/physiopathology , Litter Size/drug effects , Nitric Oxide/biosynthesis , Organ Size/drug effects , Placenta/drug effects , Placenta/pathology , Pregnancy , Rats , Rats, Wistar , Uterus/drug effects , Uterus/metabolism
7.
Clin Exp Pharmacol Physiol ; 45(11): 1118-1127, 2018 11.
Article in English | MEDLINE | ID: mdl-29927503

ABSTRACT

Dysregulation of hydrogen sulphide (H2 S) producing enzymes has been related to hypertensive pregnancy, and H2 S donor, sodium hydrosulphide (NaHS) exerts antihypertensive effects, modulates angiogenic factors production and acts as an antioxidant. Moreover, reduction in nitric oxide (NO) bioavailability is related to hypertensive pregnancy and H2 S may interact with NO, modulating its production. We aimed to investigate the NaHS effects in hypertension-in-pregnancy and also in feto-placental parameters. Female Wistar rats (200-250 g) were mated and desoxycorticosterone acetate injections followed by replacement of water by 0.9% saline solution were used to induce hypertensive pregnancy. Rats were divided into four groups: normal pregnant (Norm-Preg), pregnant + NaHS (Preg+NaHS), hypertensive pregnant (HTN-Preg) and HTN-Preg+NaHS. Systolic blood pressure was increased in HTN-Preg and this increase was blunted in HTN-Preg+NaHS. Fetal and placental weights were decreased in HTN-Preg animals, while fetal growth restriction was improved in HTN-Preg+NaHS. Placental weight was lower in HTN-Preg+NaHS than in HTN-Preg; however, placental efficiency was re-established in HTN-Preg+NaHS rats. We observed that a partial contribution of placental NO, but not changes in anti-angiogenic factors may mediate the increases in placental efficiency in HTN-Preg+NaHS. HTN-Preg presented thoracic aorta hyperreactivity to phenylephrine while NaHS treatment blunted this hyperreactivity, which seems not to be related to NO-mediated relaxation induced by acetylcholine. Therefore, changes in vascular responsiveness promoted by NaHS treatment may underlie the beneficial effects in systolic blood pressure and feto-placental parameters in our study.


Subject(s)
Hydrogen Sulfide/metabolism , Hypertension, Pregnancy-Induced/drug therapy , Nitric Oxide/metabolism , Placenta/drug effects , Sulfides/pharmacology , Vasodilation/drug effects , Animals , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Aorta/drug effects , Aorta/physiopathology , Blood Pressure/drug effects , Female , Fetal Weight/drug effects , Hypertension, Pregnancy-Induced/metabolism , Hypertension, Pregnancy-Induced/physiopathology , Malondialdehyde/metabolism , Neovascularization, Physiologic/drug effects , Nitrates/metabolism , Nitrites/metabolism , Placenta/metabolism , Pregnancy , Rats , Rats, Wistar , Sulfides/therapeutic use
8.
Biomed Res Int ; 2018: 4627391, 2018.
Article in English | MEDLINE | ID: mdl-29789795

ABSTRACT

Lead- (Pb-) induced hypertension has been shown in humans and experimental animals and cardiovascular effects of hydrogen sulfide (H2S) have been reported previously. However, no studies examined involvement of H2S in Pb-induced hypertension. We found increases in diastolic blood pressure and mean blood pressure in Pb-intoxicated humans followed by diminished H2S plasmatic levels. In order to expand our findings, male Wistar rats were divided into four groups: Saline, Pb, NaHS, and Pb + NaHS. Pb-intoxicated animals received intraperitoneally (i.p.) 1st dose of 8 µg/100 g of Pb acetate and subsequent doses of 0.1 µg/100 g for seven days and sodium hydrosulfide- (NaHS-) treated animals received i.p. NaHS injections (50 µmol/kg/twice daily) for seven days. NaHS treatment blunted increases in systolic blood pressure, increased H2S plasmatic levels, and diminished whole-blood lead levels. Treatment with NaHS in Pb-induced hypertension seems to induce a protective role in rat aorta which is dependent on endothelium and seems to promote non-NO-mediated relaxation. Pb-intoxication increased oxidative stress in rats, while treatment with NaHS blunted increases in plasmatic MDA levels and increased antioxidant status of plasma. Therefore, H2S pathway may be involved in Pb-induced hypertension and treatment with NaHS exerts antihypertensive effect, promotes non-NO-mediated relaxation, and decreases oxidative stress in rats with Pb-induced hypertension.


Subject(s)
Hydrogen Sulfide/blood , Hypertension/blood , Hypertension/chemically induced , Lead/toxicity , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/pathology , Blood Pressure/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Male , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Rats , Rats, Wistar
9.
J Huazhong Univ Sci Technolog Med Sci ; 37(6): 904-909, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29270751

ABSTRACT

Myeloperoxidase (MPO) is released from activated neutrophils. The inflammation in preeclampsia was found to be associated with endothelial dysfunction. We hypothesized that cardiac and circulating MPO levels are elevated in hypertensive pregnancy. Systolic and diastolic blood pressure and heart rate were measured on pregnancy days 14, 16, 18 and 20 in normal pregnant and hypertensive pregnant rats. Left and right ventricle weights, the number of viable fetuses, litter size, fetal and placenta weights were recorded on gestational day 21. Circulating and cardiac MPO activities, soluble fms-like tyrosine kinase-1 (sFlt-1) and vascular endothelial growth factor (VEGF) and nitric oxide (NO) were detected. The results showed increases in cardiac (left, but not right ventricle) and circulating MPO activities, and concomitantly lower number of viable fetuses, litter size, and fetal and placenta weights, and decreases in NO in hypertensive pregnant rats. Also, the increases in circulating sFlt-1 and VEGF were found in hypertensive pregnant group. In conclusion, maternal and fetal detrimental changes along with increases in circulating sFlt-1 and VEGF in hypertensive pregnancy may be associated with increases in cardiac and circulating MPO activities, confirming the causative role of inflammatory response in preeclampsia.


Subject(s)
Heart Ventricles/metabolism , Peroxidase/genetics , Pre-Eclampsia/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-1/genetics , Animals , Disease Models, Animal , Female , Fetus , Gene Expression Regulation , Gestational Age , Heart Ventricles/pathology , Humans , Litter Size , Nitric Oxide/metabolism , Peroxidase/metabolism , Placenta/metabolism , Placenta/pathology , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Pregnancy , Rats , Rats, Inbred SHR , Rats, Wistar , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism
10.
Biochem Pharmacol ; 146: 101-116, 2017 12 15.
Article in English | MEDLINE | ID: mdl-28912068

ABSTRACT

Preeclampsia is a form of hypertension-in-pregnancy (HTN-Preg) with unclear mechanism. Generalized reduction of uterine perfusion pressure (RUPP) could be an initiating event leading to uteroplacental ischemia, angiogenic imbalance, and HTN-Preg. Additional regional differences in uteroplacental blood flow could further affect the pregnancy outcome and increase the risk of preeclampsia in twin or multiple pregnancy, but the mechanisms involved are unclear. To test the hypothesis that regional differences in angiogenic balance and matrix metalloproteinases (MMPs) underlie regional uteroplacental vascularization and feto-placental development, we compared fetal and placental growth, and placental and myoendometrial vascularization in the proximal, middle and distal regions of the uterus (in relation to the iliac bifurcation) in normal pregnant (Preg) and RUPP rats. Maternal blood pressure and plasma anti-angiogenic soluble fms-like tyrosine kinase-1 (sFlt-1)/placenta growth factor (PIGF) ratio were higher, and average placentae number, placenta weight, litter size, and pup weight were less in RUPP than Preg rats. The placenta and pup number and weight were reduced, while the number and diameter of placental and adjacent myoendometrial arteries, and MMP-2 and MMP-9 levels/activity were increased, and sFlt-1/PlGF ratio was decreased in distal vs proximal uterus of Preg rats. In RUPP rats, the placenta and pup number and weight, the number and diameter of placental and myoendometrial arteries, and MMP-2 and -9 levels/activity were decreased, and sFlt-1/PlGF ratio was increased in distal vs proximal uterus. Treatment with sFlt-1 or RUPP placenta extract decreased MMP-2 and MMP-9 in distal segments of Preg uterus, and treatment with PIGF or Preg placenta extract restored MMP levels in distal segments of RUPP uterus. Thus, in addition to the general reduction in placental and fetal growth during uteroplacental ischemia, localized angiogenic imbalance and diminished MMP-2 and MMP-9 could cause further decrease in placental and myoendometrial vascularization and placental and fetal growth in distal vs proximal uterus of HTN-Preg rats. Regional differences in uteroplacental perfusion, angiogenic balance and MMPs could be a factor in the incidence of preeclampsia in multiple pregnancy.


Subject(s)
Hypertension/pathology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Neovascularization, Physiologic/physiology , Placental Circulation/physiology , Animals , Female , Fetal Development , Gene Expression Regulation, Enzymologic , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Placenta , Pregnancy , Pregnancy Complications , Rats , Rats, Sprague-Dawley , Uterus/blood supply , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism
11.
Naunyn Schmiedebergs Arch Pharmacol ; 389(12): 1325-1332, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27620880

ABSTRACT

Sodium hydrosulfide (NaHS) has presented antihypertensive and antioxidant effects and may reduce circulating soluble fms-like tyrosine kinase-1 (sFlt-1). We examined whether NaHS prevents maternal and fetal detrimental changes in a model of hypertension in pregnancy induced by N(G)-nitro-L-arginine methyl ester (L-NAME). Forty pregnant rats were divided into four groups (n = 10 per group): Norm-Preg, Preg + NaHS, HTN-Preg, or HTN-Preg + NaHS. Systolic blood pressure (SBP), number of viable fetuses, litter size, pups, and placentae weights were recorded. Circulating plasma sFlt-1, vascular endothelial growth factor (VEGF), myeloperoxidase (MPO), trolox equivalent antioxidant capacity (TEAC) levels, and biochemical determinants of nitric oxide (NO) formation were assessed. SBP values were elevated in the HTN-Preg group on gestational days 16, 18, and 20. However, HTN-Preg + NaHS group presented lower SBP values on days 18 and 20. Lower number of viable fetuses and litter size were found only in HTN-Preg group compared to other. Reductions in placental weight were found in HTN-Preg and HTN-Preg + NaHS groups. Increases in fetal weight were found only in Preg + NaHS group. Increases in circulating sFlt-1 and VEGF levels were observed only in HTN-Preg group compared to other. Higher MPO and lower TEAC plasma levels were found in HTN-Preg + NaHS and HTN-Preg groups. NO was diminished in HTN-Preg animals, and NaHS treatment increased NO levels only in hypertensive pregnant animals. Treatment with NaHS prevents hypertension in pregnancy and concomitantly reduces circulating plasma sFlt-1 and VEGF levels; this correlates with improved litter size with more viable fetuses and increase in NO levels. However, these beneficial effects presented no relation with oxidative stress.


Subject(s)
Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Hypertension, Pregnancy-Induced/prevention & control , Sulfides/pharmacology , Vascular Endothelial Growth Factor A/blood , Vascular Endothelial Growth Factor Receptor-1/blood , Animals , Biomarkers/blood , Disease Models, Animal , Down-Regulation , Female , Fetal Viability/drug effects , Fetal Weight/drug effects , Gestational Age , Hypertension, Pregnancy-Induced/chemically induced , Hypertension, Pregnancy-Induced/enzymology , Hypertension, Pregnancy-Induced/physiopathology , Litter Size/drug effects , NG-Nitroarginine Methyl Ester , Nitric Oxide/metabolism , Oxidative Stress , Peroxidase/blood , Placentation/drug effects , Pregnancy , Rats, Wistar
12.
Nitric Oxide ; 57: 71-78, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27181106

ABSTRACT

Preeclampsia is a pregnancy-associated disorder characterized by hypertension with uncertain pathogenesis. Increases in antiangiogenic soluble fms-like tyrosine kinase-1 (sFlt-1) and reductions in nitric oxide (NO) bioavailability have been observed in preeclamptic women. However, the specific mechanisms linking these detrimental changes to the hypertension-in-pregnancy are not clearly understood. In this regard, while recent findings have suggested that nitrite-derived NO formation exerts antihypertensive and antioxidant effects, no previous study has examined these responses to orally administered nitrite in hypertension-in-pregnancy. We then hypothesized restoring NO bioavailability with sodium nitrite in pregnant rats upon NO synthesis inhibition with N(omega)-nitro-l-arginine methyl ester (L-NAME) attenuates hypertension and high circulating levels of sFlt-1. Number and weight of pups and placentae were recorded to assess maternal-fetal interface. Plasma sFlt-1, vascular endothelial growth factor (VEGF) and biochemical determinants of NO formation and of antioxidant function were measured. We found that sodium nitrite blunts the hypertension-in-pregnancy and restores the NO bioavailability, and concomitantly prevents the L-NAME-induced high circulating sFlt-1 and VEGF levels. Also, our results suggest that nitrite-derived NO protected against reductions in litter size and placental weight caused by L-NAME, improving number of viable and resorbed fetuses and antioxidant function. Therefore, the present findings are consistent with the hypothesis that nitrite-derived NO may possibly be the driving force behind the maternal and fetal beneficial effects observed with sodium nitrite during hypertension-in-pregnancy. Certainly further investigations are required in preeclampsia, since counteracting the damages to the mother and fetal sides resulting from hypertension and elevated sFlt-1 levels may provide a great benefit in this gestational hypertensive disease.


Subject(s)
Antioxidants/therapeutic use , Hypertension, Pregnancy-Induced/prevention & control , Sodium Nitrite/therapeutic use , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Animals , Antioxidants/administration & dosage , Blood Pressure/drug effects , Female , Hypertension, Pregnancy-Induced/chemically induced , Hypertension, Pregnancy-Induced/metabolism , Hypertension, Pregnancy-Induced/physiopathology , Litter Size/drug effects , Male , NG-Nitroarginine Methyl Ester , Nitrates/blood , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/blood , Nitrites/blood , Organ Size , Placenta/drug effects , Placenta/physiopathology , Pregnancy , Rats, Wistar , Sodium Nitrite/administration & dosage
13.
Basic Clin Pharmacol Toxicol ; 118(3): 225-30, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26333850

ABSTRACT

Hypotensive effects of oral sodium nitrite have been reported as alternative sources of nitric oxide (NO) formation in animals and human beings. Reductions in NO bioavailability were observed in lead-induced hypertension. However, no previous study has examined whether a single daily dose of sodium nitrite prevents the reductions in the NO bioavailability in lead-induced hypertension. Then, we expanded previous reports and evaluated the effects of sodium nitrite in 7-day lead-treated rats. Wistar rats were divided into four experimental groups: Pb+sodium nitrite group received intraperitoneally (i.p.) 1st dose 8 µg/100 g of lead acetate and a subsequent dose of 0.1 µg/100 g, and daily treatment with sodium nitrite (45 mg/kg/day) or water (Pb group) by gavage for 7 days; Sodium nitrite group received i.p. 1st dose 8 µg/100 g of sodium acetate and a subsequent dose of 0.1 µg/100 g, and daily treatment with sodium nitrite (45 mg/kg/day) or water (saline group) by gavage for 7 days. Similar and higher whole-blood lead levels (11.5 ± 1.2 and 13.2 ± 0.7 µg/dL) were found in lead-exposed rats treated with either water or sodium nitrite (Pb or Pb+sodium nitrite, respectively; both p < 0.05 versus control groups). We found lower NO markers such as plasma nitrite and nitrite + nitrate (NOx) levels (both p < 0.05 versus controls) in lead-exposed rats compared with normotensive (sodium acetate)-treated controls (Pb group versus saline group; p < 0.05). Lead induced increases in systolic blood pressure (from 130 ± 2 to 164 ± 6 mmHg in Pb group; p < 0.05); however, both lead-induced decreases in NO markers and hypertension (Pb+sodium nitrite group versus Pb group; both p < 0.05) were prevented by a single daily dose of sodium nitrite. In conclusion, these findings are consistent with the idea that impaired NO bioavailability contributes to the maintenance of elevated blood pressure in lead-induced hypertension. Additionally, our results show that sodium nitrite exerts antihypertensive effects in lead-induced hypertension and provide evidence that sodium nitrite prevents the impairment of NO, thus, reaffirming the relevance of nitrite as alternative source of recycling back to NO.


Subject(s)
Antihypertensive Agents/pharmacology , Hypertension/drug therapy , Lead/toxicity , Nitric Oxide/blood , Sodium Nitrite/pharmacology , Animals , Blood Pressure/drug effects , Hypertension/blood , Hypertension/chemically induced , Male , Rats , Rats, Wistar
14.
Biomed Res Int ; 2015: 264971, 2015.
Article in English | MEDLINE | ID: mdl-26101770

ABSTRACT

Taking into account that there are controversial antioxidative effects of inhalational anesthetics isoflurane and sevoflurane and absence of comparison of genotoxicity of both anesthetics in animal model, the aim of this study was to compare DNA damage and antioxidant status in Wistar rats exposed to a single time to isoflurane or sevoflurane. The alkaline single-cell gel electrophoresis assay (comet assay) was performed in order to evaluate DNA damage in whole blood cells of control animals (unexposed; n = 6) and those exposed to 2% isoflurane (n = 6) or 4% sevoflurane (n = 6) for 120 min. Plasma antioxidant status was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. There was no statistically significant difference between isoflurane and sevoflurane groups regarding hemodynamic and temperature variables (P > 0.05). Sevoflurane significantly increased DNA damage compared to unexposed animals (P = 0.02). In addition, Wistar rats anesthetized with isoflurane showed higher antioxidative status (MTT) than control group (P = 0.019). There were no significant differences in DNA damage or antioxidant status between isoflurane and sevoflurane groups (P > 0.05). In conclusion, our findings suggest that, in contrast to sevoflurane exposure, isoflurane increases systemic antioxidative status, protecting cells from DNA damage in rats.


Subject(s)
Antioxidants/metabolism , DNA Damage/drug effects , Isoflurane/administration & dosage , Methyl Ethers/administration & dosage , Anesthetics, Inhalation/administration & dosage , Anesthetics, Inhalation/adverse effects , Animals , Antioxidants/adverse effects , Disease Models, Animal , Isoflurane/adverse effects , Male , Methyl Ethers/adverse effects , Rats , Sevoflurane
15.
Basic Clin Pharmacol Toxicol ; 116(6): 508-15, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25308714

ABSTRACT

Intoxication with lead (Pb) results in increased blood pressure by mechanisms involving matrix metalloproteinases (MMPs). Recent findings have revealed that MMP type two (MMP-2) seems to cleave vasoactive peptides. This study examined whether MMP-2 and MMP-9 levels/activities increase after acute intoxication with low lead concentrations and whether these changes were associated with increases in blood pressure and circulating endothelin-1 or with reductions in circulating adrenomedullin and calcitonin gene-related peptide (CGRP). Here, we expand previous findings and examine whether doxycycline (a MMPs inhibitor) affects these alterations. Wistar rats received intraperitoneally (i.p.) 1st dose 8 µg/100 g of lead (or sodium) acetate, a subsequent dose of 0.1 µg/100 g to cover daily loss and treatment with doxycycline (30 mg/kg/day) or water by gavage for 7 days. Similar whole-blood lead levels (9 µg/dL) were found in lead-exposed rats treated with either doxycycline or water. Lead-induced increases in systolic blood pressure (from 143 ± 2 to 167 ± 3 mmHg) and gelatin zymography of plasma samples showed that lead increased MMP-9 (but not MMP-2) levels. Both lead-induced increased MMP-9 activity and hypertension were blunted by doxycycline. Doxycycline also prevented lead-induced reductions in circulating adrenomedullin. No significant changes in plasma levels of endothelin-1 or CGRP were found. Lead-induced decreases in nitric oxide markers and antioxidant status were not prevented by doxycycline. In conclusion, acute lead exposure increases blood pressure and MMP-9 activity, which were blunted by doxycycline. These findings suggest that MMP-9 may contribute with lead-induced hypertension by cleaving the vasodilatory peptide adrenomedullin, thereby inhibiting adrenomedullin-dependent lowering of blood pressure.


Subject(s)
Adrenomedullin/blood , Hypertension/blood , Hypertension/drug therapy , Lead Poisoning/blood , Lead Poisoning/drug therapy , Matrix Metalloproteinase Inhibitors/therapeutic use , Animals , Antioxidants/metabolism , Blood Pressure/drug effects , Calcitonin Gene-Related Peptide/blood , Doxycycline/pharmacology , Endothelin-1/blood , Hypertension/chemically induced , Lead/blood , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Nitrates/blood , Nitrites/blood , Rats , Rats, Wistar
16.
Crit Care Med ; 41(7): e118-24, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23478656

ABSTRACT

OBJECTIVES: We examined whether experimental lung embolization with autologous blood clots or with the infusion of microspheres increase cell-free hemoglobin levels and nitric oxide consumption by plasma samples from anesthetized lambs. These parameters were also measured in patients with acute pulmonary thromboembolism at baseline conditions and after thrombolysis, and in healthy controls. DESIGN: Controlled animal and clinical studies. SETTING: University research laboratory and university hospital. SUBJECTS: Sheep and humans. INTERVENTIONS: Anesthetized lambs were embolized with intravenous injections of autologous blood clots or repeated injections of 300 µm microspheres. Control animals received saline. Blood samples were drawn from patients with acute pulmonary thromboembolism at baseline conditions and after thrombolytic therapy with streptokinase or alteplase. MEASUREMENTS AND MAIN RESULTS: Hemodynamic measurements were performed and plasma cell-free hemoglobin concentrations were measured. A nitric oxide consumption assay was used to measure nitric oxide consumption by plasma samples. Embolization with blood clots or microspheres increased mean pulmonary artery pressure from ~15 to ~40 mm Hg in lambs. Both plasma hemoglobin concentrations and nitric oxide consumption increased in proportion to the hemodynamic alterations and correlated significantly. Patients with acute pulmonary thromboembolism had higher plasma hemoglobin concentrations and nitric oxide consumption than healthy controls. Thrombolysis with streptokinase or alteplase further increased both parameters, which peaked 1-3 days after thrombolysis. CONCLUSIONS: Our results show consistent evidence indicating a new mechanism involving increased hemoglobin decompartmentalization and augmented nitric oxide consumption, possibly contributing to the hemodynamic derangement of acute pulmonary thromboembolism.


Subject(s)
Hemoglobins/metabolism , Nitric Oxide/metabolism , Pulmonary Embolism/physiopathology , Animals , Disease Models, Animal , Hemodynamics , Male , Pulmonary Embolism/metabolism , Sheep
17.
Eur J Pharmacol ; 670(2-3): 554-60, 2011 Nov 30.
Article in English | MEDLINE | ID: mdl-21946107

ABSTRACT

We investigated whether atorvastatin has beneficial hemodynamic effects during acute pulmonary thromboembolism (APT) and whether sildenafil improves these effects. We studied the involvement of oxidative stress, matrix metalloproteinases (MMPs), and neutrophil activation. APT was induced with autologous blood clots (500 mg/kg) in anesthetized male lambs pretreated with atorvastatin (10 mg/kg/day, subcutaneously; 1 week) or vehicle (dimethyl sulfoxide 10% subcutaneously). Sildenafil (0.7 mg/kg intravenously) or saline infusions were performed 60 min after APT induction. Non-embolized control animals received saline. APT significantly increased pulmonary vascular resistance index (PVRI) and mean pulmonary artery pressure (MPAP) by approximately 310% and 258% respectively. While atorvastatin pretreatment attenuated these increases (~150% and 153%, respectively; P < 0.05), its combination with sildenafil was associated with lower increases in PVRI and MPAP (~32% and 36%, respectively). Gelatin zymography showed increased MMP-9 and MMP-2 levels in the bronchoalveolar lavage, and increased MMP-9 levels in plasma from embolized animals. Atorvastatin pretreatment attenuated bronchoalveolar lavage MMP-2 increases. The combination of drugs blunted the MMPs increases in bronchoalveolar lavage and plasma (P < 0.05). Neutrophils accumulated in bronchoalveolar lavage after APT, and atorvastatin pretreatment combined with sildenafil (but not atorvastatin alone) attenuated this effect (P < 0.05). APT increased lung lipid peroxidation and total protein concentrations in bronchoalveolar lavage, thus indicating oxidative stress and alveolar-capillary barrier damage, respectively. Both increases were attenuated by atorvastatin pretreatment alone or combined with sildenafil (P < 0.05). We conclude that pretreatment with atorvastatin protects against the pulmonary hypertension associated with APT and that sildenafil improves this response. These findings may reflect antioxidant effects and inhibited neutrophils/MMPs activation.


Subject(s)
Hemodynamics/drug effects , Heptanoic Acids/pharmacology , Piperazines/pharmacology , Pulmonary Embolism/physiopathology , Pyrroles/pharmacology , Sulfones/pharmacology , Acute Disease , Animals , Atorvastatin , Bronchoalveolar Lavage , Drug Synergism , Enzyme Activation/drug effects , Heart Ventricles/pathology , Lipid Peroxidation/drug effects , Lung/drug effects , Lung/metabolism , Male , Matrix Metalloproteinases/blood , Matrix Metalloproteinases/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Neutrophils/cytology , Neutrophils/drug effects , Oxidative Stress/drug effects , Pulmonary Embolism/blood , Pulmonary Embolism/immunology , Pulmonary Embolism/metabolism , Purines/pharmacology , Sildenafil Citrate
18.
Crit Care Med ; 39(2): 349-56, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20890187

ABSTRACT

OBJECTIVES: Up-regulated matrix metalloproteinases may be involved in the development of cardiomyocyte injury and the degradation of troponin associated with acute pulmonary thromboembolism. We examined whether pretreatment with doxycycline (a nonspecific matrix metalloproteinase inhibitor) protects against cardiomyocyte injury associated with acute pulmonary thromboembolism. DESIGN: Controlled animal study. SETTING: University research laboratory. SUBJECTS: Mongrel dogs. INTERVENTIONS: Anesthetized animals received doxycycline (10 mg/kg intravenously) or saline and acute pulmonary thromboembolism was induced with autologous blood clots injected into the right atrium. Control animals received doxycycline (or saline). MEASUREMENTS AND MAIN RESULTS: Hemodynamic measurements were performed, and acute pulmonary thromboembolism increased baseline mean pulmonary arterial pressure and pulmonary vascular resistance by approximately 160% and 362%, respectively (both p < .05), 120 mins after acute pulmonary thromboembolism. Pretreatment with doxycycline attenuated these increases (to 125% and 232%, respectively; both p < .05). Although acute pulmonary thromboembolism tended to increase the right ventricle maximum rate of isovolumic pressure development and the maximum rate of isovolumic pressure decay, doxycycline produced no effects on these parameters. Gelatin zymograms of right ventricle showed that acute pulmonary thromboembolism marginally increased matrix metalloproteinase-9 (but not matrix metalloproteinase-2) levels in the right ventricle. A fluorometric assay to assess net matrix metalloproteinase activities showed that acute pulmonary thromboembolism increased matrix metalloproteinase activities in the right ventricle by >100% (p < .05), and this finding was confirmed by in situ zymography of the right ventricle. Doxycycline attenuated acute pulmonary thromboembolism-induced increases in right ventricle matrix metalloproteinase activities. Acute pulmonary thromboembolism induced neutrophil accumulation in the right ventricle, as estimated by myeloperoxidase activity, and doxycycline blunted this effect (p < .05). Serum cardiac troponin I concentrations, which reflect cardiomyocyte injury, increased after acute pulmonary thromboembolism, and this increase was attenuated by pretreatment with doxycycline (p < .05). CONCLUSIONS: We found evidence supporting the idea that acute pulmonary thromboembolism is associated with increased matrix metalloproteinase activities in the right ventricle, which may lead to degradation of sarcomeric proteins, including cardiac troponin I. Inhibition of matrix metalloproteinases may be an effective therapeutic intervention in the management of acute pulmonary thromboembolism.


Subject(s)
Doxycycline/administration & dosage , Matrix Metalloproteinase Inhibitors , Myocytes, Cardiac/drug effects , Pulmonary Embolism/drug therapy , Ventricular Dysfunction, Right/prevention & control , Acute Disease , Analysis of Variance , Animals , Cardiac Output , Disease Models, Animal , Dogs , Female , Hemodynamics/physiology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/physiopathology , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Random Allocation , Reference Values , Statistics, Nonparametric , Troponin I/blood , Ventricular Dysfunction, Right/pathology
19.
Nitric Oxide ; 23(4): 284-8, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20804854

ABSTRACT

While endogenous nitric oxide (NO) may be relevant to the beneficial hemodynamic effects produced by sildenafil during acute pulmonary embolism (APE), huge amounts of inducible NO synthase (iNOS)-derived NO may contribute to lung injury. We hypothesized that iNOS inhibition with S-methylisothiourea could attenuate APE-induced increases in oxidative stress and pulmonary hypertension and, therefore, could improve the beneficial hemodynamic and antioxidant effects produced by sildenafil during APE. Hemodynamic evaluations were performed in non-embolized dogs treated with saline (n=4), S-methylisothiourea (0.01 mg/kg followed by 0.5 mg/kg/h, n=4), sildenafil (0.3 mg/kg, n=4), or S-methylisothiourea followed by sildenafil (n=4), and in dogs that received the same drugs and were embolized with silicon microspheres (n=8 for each group). Plasma nitrite/nitrate (NOx) and thiobarbituric acid reactive substances (TBARS) concentrations were determined by Griess and a fluorometric assay, respectively. APE increased mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance index (PVRI) by 25±1.7 mm Hg and by 941±34 dyn s cm(-5) m(-2), respectively. S-methylisothiourea neither attenuated APE-induced pulmonary hypertension, nor enhanced the beneficial hemodynamic effects produced by sildenafil after APE (>50% reduction in pulmonary vascular resistance). While sildenafil produced no change in plasma NOx concentrations, S-methylisothiourea alone or combined with sildenafil blunted APE-induced increases in NOx concentrations. Both drugs, either alone or combined, produced antioxidant effects. In conclusion, although iNOS-derived NO may play a key role in APE-induced oxidative stress, our results suggest that the iNOS inhibitor S-methylisothiourea neither attenuates APE-induced pulmonary hypertension, nor enhances the beneficial hemodynamic effects produced by sildenafil.


Subject(s)
Hemodynamics/drug effects , Isothiuronium/analogs & derivatives , Nitric Oxide Synthase Type II/antagonists & inhibitors , Piperazines/pharmacology , Pulmonary Embolism/metabolism , Sulfones/pharmacology , Acute Disease , Animals , Dogs , Female , Isothiuronium/pharmacology , Male , Nitrates/blood , Nitric Oxide/analysis , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitrites/blood , Oxidative Stress , Purines/pharmacology , Sildenafil Citrate , Thiobarbituric Acid Reactive Substances/analysis
20.
Naunyn Schmiedebergs Arch Pharmacol ; 382(4): 293-301, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20694791

ABSTRACT

Quercetin has antioxidants properties which may increase nitric oxide (NO) bioavailability. However, the effects of quercetin on NO status have been poorly studied. We evaluated whether quercetin improves the plasma levels of NO metabolites in two-kidney one-clip (2K1C) hypertensive rats and assessed its effect on endothelial function. Sham-operated and 2K1C rats were treated with quercetin (10 mg(-1) kg(-1) day(-1) by gavage) or vehicle for 3 weeks. Systolic blood pressure (SBP) was monitored weekly. Vascular responses to acetylcholine (Ach) and sodium nitroprusside (SNP) were assessed in hindquarter vascular bed. Plasma nitrate levels were assessed by Griess reagent and plasma nitrite and nitroso species (S, N-nitroso species) were assessed by ozone- based chemiluminescence. Aortic NADPH oxidase activity and superoxide production were evaluated. While quercetin had no effects in control normotensive rats (P > 0.05), it significantly reduced SBP in 2K1C rats (P < 0.05). At the end of treatment, plasma nitrate levels were similar in all experimental groups (P > 0.05). However, plasma nitrite and the nitroso species levels were significantly lower in 2K1C rats when compared with controls (P < 0.05). Quercetin treatment restored plasma nitrite and nitroso species levels to those found in the sham-vehicle group (P < 0.05). While quercetin treatment induced no significant changes in responses to SNP (P > 0.05), it restored the vascular responses to Ach. Quercetin significantly attenuated 2K1C-hypertension-induced increases in NADPH oxidase activity and vascular superoxide production (P < 0.05). These results suggest that the antihypertensive effects of quercetin were associated with increased NO formation and improved endothelial function, which probably result from its antioxidant effects.


Subject(s)
Antioxidants/therapeutic use , Hypertension, Renovascular/drug therapy , Nitrites/blood , Nitroso Compounds/blood , Quercetin/therapeutic use , Animals , Antioxidants/pharmacology , Blood Pressure/drug effects , Disease Models, Animal , Endothelium, Vascular/drug effects , Endothelium, Vascular/enzymology , Endothelium, Vascular/metabolism , Hypertension, Renovascular/blood , Male , NADPH Oxidases/metabolism , Nitric Oxide/biosynthesis , Quercetin/pharmacology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...