Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells ; 27(10): 2373-82, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19544474

ABSTRACT

Gliomas, the most frequent primitive central nervous system tumors, have been suggested to originate from astrocytes or from neural progenitors/stem cells. However, the precise identity of the cells at the origin of gliomas remains a matter of debate because no pre-neoplastic state has been yet identified. Transforming growth factor (TGF)-alpha, an epidermal growth factor family member, is frequently overexpressed in the early stages of glioma progression. We previously demonstrated that prolonged exposure of astrocytes to TGF-alpha is sufficient to trigger their reversion to a neural progenitor-like state. To determine whether TGF-alpha dedifferentiating effects are associated with cancerous transforming effects, we grafted intracerebrally dedifferentiated astrocytes. We show that these cells had the same cytogenomic profile as astrocytes, survived in vivo, and did not give birth to tumors. When astrocytes dedifferentiated with TGF-alpha were submitted to oncogenic stress using gamma irradiation, they acquired cancerous properties: they were immortalized, showed cytogenomic abnormalities, and formed high-grade glioma-like tumors after brain grafting. In contrast, irradiation did not modify the lifespan of astrocytes cultivated in serum-free medium. Addition of TGF-alpha after irradiation did not promote their transformation but decreased their lifespan. These results demonstrate that reversion of mature astrocytes to an embryonic state without genomic manipulation is sufficient to sensitize them to oncogenic stress.


Subject(s)
Astrocytes/drug effects , Brain Neoplasms/chemically induced , Cell Transformation, Neoplastic/chemically induced , Glioma/chemically induced , Stem Cells/drug effects , Transforming Growth Factor alpha/pharmacology , Animals , Astrocytes/metabolism , Astrocytes/radiation effects , Brain Neoplasms/physiopathology , Cell Dedifferentiation/drug effects , Cell Dedifferentiation/physiology , Cell Dedifferentiation/radiation effects , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/radiation effects , Cells, Cultured , Culture Media, Serum-Free/pharmacology , Gamma Rays/adverse effects , Glioma/physiopathology , Mice , Mice, Inbred C57BL , Mice, Nude , Stem Cell Transplantation , Stem Cells/metabolism , Stem Cells/radiation effects , Stress, Physiological/physiology , Stress, Physiological/radiation effects , Transforming Growth Factor alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...