Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharm Sin B ; 13(8): 3208-3237, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37655317

ABSTRACT

Neurodegenerative and neuropsychiatric diseases are increasingly affecting individuals' quality of life, thus increasing their cost to social and health systems. These diseases have overlapping mechanisms, such as oxidative stress, protein aggregation, neuroinflammation, neurotransmission impairment, mitochondrial dysfunction, and excitotoxicity. Currently, there is no cure for neurodegenerative diseases, and the available therapies have adverse effects and low efficacy. For neuropsychiatric disorders, such as depression, the current therapies are not adequate to one-third of the patients, the so-called treatment-resistant patients. So, searching for new treatments is fundamental. Medicinal plants appear as a strong alternative and complement towards new treatment protocols, as they have been used for health purposes for thousands of years. Thus, the main goal of this review is to revisit the neuroprotective potential of some of the most predominant medicinal plants (and one fungus) used in traditional Chinese medicine (TCM), focusing on their proven mechanisms of action and their chemical compositions, to give clues on how they can be useful against neurodegeneration progression.

2.
J Ethnopharmacol ; 290: 115107, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35176467

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease is the most common form of dementia, but its treatment options remain few and ineffective. To find new therapeutic strategies, natural products have gained interest due to their neuroprotective potential, being able to target different pathological hallmarks associated with this disorder. Several plant species are traditionally used due to their empirical neuroprotective effects and it is worth to explore their mechanism of action. AIM OF THE STUDY: This study intended to explore the neuroprotective potential of seven traditional medicinal plants, namely Scutellaria baicalensis, Ginkgo biloba, Hypericum perforatum, Curcuma longa, Lavandula angustifolia, Trigonella foenum-graecum and Rosmarinus officinalis. The safety assessment with reference to pesticides residues was also aimed. MATERIALS AND METHODS: Decoctions prepared from these species were chemically characterized by HPLC-DAD and screened for their ability to scavenge four different free radicals (DPPH•, ABTS•+, O2•‒ and •NO) and to inhibit enzymes related to neurodegeneration (cholinesterases and glycogen synthase kinase-3ß). Cell viability through MTT assay was also evaluated in two different brain cell lines, namely non-tumorigenic D3 human brain endothelial cells (hCMEC/D3) and NSC-34 motor neurons. Furthermore, and using GC, 21 pesticides residues were screened. RESULTS: Regarding chemical composition, chromatographic analysis revealed the presence of several flavonoids, phenolic acids, curcuminoids, phenolic diterpenoids, one alkaloid and one naphthodianthrone in the seven decoctions. All extracts were able to scavenge free radicals and were moderate glycogen synthase kinase-3ß inhibitors; however, they displayed weak to moderate acetylcholinesterase and butyrylcholinesterase inhibition. G. biloba and L. angustifolia decoctions were the less cytotoxic to hCMEC/D3 and NSC-34 cell lines. No pesticides residues were detected. CONCLUSIONS: The results extend the knowledge on the potential use of plant extracts to combat multifactorial disorders, giving new insights into therapeutic avenues for Alzheimer's disease.


Subject(s)
Alzheimer Disease/pathology , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Cell Line , Cell Survival/drug effects , Cholinesterases/drug effects , Dose-Response Relationship, Drug , Free Radical Scavengers/metabolism , Glycogen Synthase/drug effects , Humans , Medicine, Chinese Traditional/methods , Neuroprotective Agents/adverse effects , Pesticide Residues/analysis , Plant Extracts/adverse effects
3.
Food Res Int ; 140: 109857, 2021 02.
Article in English | MEDLINE | ID: mdl-33648175

ABSTRACT

This study gives new insights to understand the type of interactions between Ginkgo biloba L. and Scutellaria baicalensis Georgi, two Chinese medicinal plants with well documented neuroprotective effects, on three targets in Alzheimer's disease (AD): acetylcholinesterase (AChE) and butyrylcholnesterase (BuChE) inhibition and hydrogen peroxide scavenging. Individual samples, binary mixtures with different proportions of both plant species, and also a commercial multicomponent combination containing both plants together with unroasted Coffea arabica L. and quercetin-3-O-rutinoside were used to perform this in vitro evaluation. Sample phenolic profiles were also determined by HPLC-DAD, showing the presence of several flavonoid glycosides, phenolic acids and a methylxanthine. In order to investigate the possible synergism/antagonism interaction, data obtained were analyzed by CompuSyn software. The results showed that G. biloba and S. baicalensis alone display better activities than in mixtures, most of the interactions exhibiting different degrees of antagonism. A slight synergism interaction was only observed for the commercial multicomponent mixture tested against H2O2. Further analysis was carried out to understand which compounds could be responsible for the antagonistic interaction. Seventeen single pure compounds present in all extracts were tested against AChE inhibition, most of them displaying weak or no activity. Only caffeine had a remarkable activity. Five different binary and quaternary mixture compositions were design to deepen the interaction between these compounds, revealing mainly phenolic acid-flavonoid, flavonoid-flavonoid and methylxanthine-flavonoid-phenolic acid antagonistic interactions. These results clearly show that, for the targets evaluated, there is no potentiation of the neuroprotective effect by combining S. baicalensis and G. biloba extracts.


Subject(s)
Ginkgo biloba , Scutellaria baicalensis , Cholinesterases , Hydrogen Peroxide , Plant Extracts/pharmacology , Reactive Oxygen Species
4.
Nanomaterials (Basel) ; 11(3)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668341

ABSTRACT

The biggest obstacle to the treatment of diseases that affect the central nervous system (CNS) is the passage of drugs across the blood-brain barrier (BBB), a physical barrier that regulates the entry of substances into the brain and ensures the homeostasis of the CNS. This review summarizes current research on lipid-based nanoparticles for the nanoencapsulation of neuroprotective compounds. A survey of studies on nanoemulsions (NEs), nanoliposomes/nanophytosomes and solid lipid nanoparticles (SLNs)/nanostructured lipid carriers (NLCs) was carried out and is discussed herein, with particular emphasis upon their unique characteristics, the most important parameters influencing the formulation of each one, and examples of neuroprotective compounds/extracts nanoencapsulated using these nanoparticles. Gastrointestinal absorption is also discussed, as it may pose some obstacles for the absorption of free and nanoencapsulated neuroprotective compounds into the bloodstream, consequently hampering drug concentration in the brain. The transport mechanisms through which compounds or nanoparticles may cross BBB into the brain parenchyma, and the potential to increase drug bioavailability, are also discussed. Additionally, factors contributing to BBB disruption and neurodegeneration are described. Finally, the advantages of, and obstacles to, conventional and unconventional routes of administration to deliver nanoencapsulated neuroprotective drugs to the brain are also discussed, taking into account the avoidance of first-pass metabolism, onset of action, ability to bypass the BBB and concentration of the drug in the brain.

SELECTION OF CITATIONS
SEARCH DETAIL
...