Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 17(7): 1910-1923, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35761435

ABSTRACT

Columbamides are chlorinated acyl amide natural products, several of which exhibit cannabinomimetic activity. These compounds were originally discovered from a culture of the filamentous marine cyanobacterium Moorena bouillonii PNG5-198 collected from the coastal waters of Papua New Guinea. The columbamide biosynthetic gene cluster (BGC) had been identified using bioinformatics, but not confirmed by experimental evidence. Here, we report the heterologous expression in Anabaena (Nostoc) PCC 7120 of the 28.5 kb BGC that encodes for columbamide biosynthesis. The production of columbamides in Anabaena is investigated under several different culture conditions, and several new columbamide analogs are identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and nuclear magnetic resonance (NMR). In addition to previously characterized columbamides A, B, and C, new columbamides I-M are produced in these experiments, and the structure of the most abundant monochlorinated analog, columbamide K (11), is fully characterized. The other new columbamide analogs are produced in only small quantities, and structures are proposed based on high-resolution-MS, MS/MS, and 1H NMR data. Overexpression of the pathway's predicted halogenases resulted in increased productions of di- and trichlorinated compounds. The most significant change in production of columbamides in Anabaena is correlated with the concentration of NaCl in the medium.


Subject(s)
Anabaena , Nostoc , Anabaena/chemistry , Anabaena/genetics , Chromatography, Liquid , Multigene Family , Nostoc/genetics , Tandem Mass Spectrometry
2.
ACS Synth Biol ; 9(12): 3364-3376, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33180461

ABSTRACT

Filamentous marine cyanobacteria make a variety of bioactive molecules that are produced by polyketide synthases, nonribosomal peptide synthetases, and hybrid pathways that are encoded by large biosynthetic gene clusters. These cyanobacterial natural products represent potential drug leads; however, thorough pharmacological investigations have been impeded by the limited quantity of compound that is typically available from the native organisms. Additionally, investigations of the biosynthetic gene clusters and enzymatic pathways have been difficult due to the inability to conduct genetic manipulations in the native producers. Here we report a set of genetic tools for the heterologous expression of biosynthetic gene clusters in the cyanobacteria Synechococcus elongatus PCC 7942 and Anabaena (Nostoc) PCC 7120. To facilitate the transfer of gene clusters in both strains, we engineered a strain of Anabaena that contains S. elongatus homologous sequences for chromosomal recombination at a neutral site and devised a CRISPR-based strategy to efficiently obtain segregated double recombinant clones of Anabaena. These genetic tools were used to express the large 28.7 kb cryptomaldamide biosynthetic gene cluster from the marine cyanobacterium Moorena (Moorea) producens JHB in both model strains. S. elongatus did not produce cryptomaldamide; however, high-titer production of cryptomaldamide was obtained in Anabaena. The methods developed in this study will facilitate the heterologous expression of biosynthetic gene clusters isolated from marine cyanobacteria and complex metagenomic samples.


Subject(s)
Anabaena/metabolism , Gene Editing/methods , Oligopeptides/biosynthesis , Biological Products/metabolism , Chromatography, High Pressure Liquid , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Multigene Family , Oligopeptides/analysis , Peptide Synthases/genetics , Plasmids/genetics , Plasmids/metabolism , Polyketide Synthases/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...