Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Acoust Soc Am ; 142(4): 2084, 2017 10.
Article in English | MEDLINE | ID: mdl-29092577

ABSTRACT

A partial differential equation-constrained optimization approach is presented for reconstructing mechanical properties (e.g., elastic moduli). The proposed method is based on the minimization of an error in constitutive equations functional augmented with a least squares data misfit term referred to as MECE for "modified error in constitutive equations." The main theme of this paper is to demonstrate several key strengths of the proposed method on experimental data. In addition, some illustrative examples are provided where the proposed method is compared with a common shear wave elastography (SWE) approach. To this end, both synthetic data, generated with transient finite element simulations, as well as ultrasonically tracked displacement data from an acoustic radiation force (ARF) experiment are used in a standard elasticity phantom. The results indicate that the MECE approach can produce accurate shear modulus reconstructions with significantly less bias than SWE.


Subject(s)
Elasticity Imaging Techniques/methods , Image Interpretation, Computer-Assisted/methods , Models, Theoretical , Ultrasonic Waves , Computer Simulation , Elastic Modulus , Elasticity Imaging Techniques/instrumentation , Finite Element Analysis , Least-Squares Analysis , Motion , Phantoms, Imaging , Reproducibility of Results
3.
Comput Methods Appl Mech Eng ; 296: 129-149, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26388656

ABSTRACT

This paper presents a methodology for the inverse identification of linearly viscoelastic material parameters in the context of steady-state dynamics using interior data. The inverse problem of viscoelasticity imaging is solved by minimizing a modified error in constitutive equation (MECE) functional, subject to the conservation of linear momentum. The treatment is applicable to configurations where boundary conditions may be partially or completely underspecified. The MECE functional measures the discrepancy in the constitutive equations that connect kinematically admissible strains and dynamically admissible stresses, and also incorporates the measurement data in a quadratic penalty term. Regularization of the problem is achieved through a penalty parameter in combination with the discrepancy principle due to Morozov. Numerical results demonstrate the robust performance of the method in situations where the available measurement data is incomplete and corrupted by noise of varying levels.

4.
Comput Mech ; 54(3): 645-659, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25339790

ABSTRACT

This work focuses on the identification of heterogeneous linear elastic moduli in the context of frequency-domain, coupled acoustic-structure interaction (ASI), using either solid displacement or fluid pressure measurement data. The approach postulates the inverse problem as an optimization problem where the solution is obtained by minimizing a modified error in constitutive equation (MECE) functional. The latter measures the discrepancy in the constitutive equations that connect kinematically admissible strains and dynamically admissible stresses, while incorporating the measurement data as additional quadratic error terms. We demonstrate two strategies for selecting the MECE weighting coefficient to produce regularized solutions to the ill-posed identification problem: 1) the discrepancy principle of Morozov, and 2) an error-balance approach that selects the weight parameter as the minimizer of another functional involving the ECE and the data misfit. Numerical results demonstrate that the proposed methodology can successfully recover elastic parameters in 2D and 3D ASI systems from response measurements taken in either the solid or fluid subdomains. Furthermore, both regularization strategies are shown to produce accurate reconstructions when the measurement data is polluted with noise. The discrepancy principle is shown to produce nearly optimal solutions, while the error-balance approach, although not optimal, remains effective and does not need a priori information on the noise level.

SELECTION OF CITATIONS
SEARCH DETAIL
...