Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 14: 357, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26383920

ABSTRACT

BACKGROUND: Approximately 50 million people (60 %) live in malaria risk areas in Ethiopia, at altitudes below 2000 m. According to official data, 60-70 % of malaria cases are due to Plasmodium falciparum, and 40-30 % by Plasmodium vivax. The species Plasmodium ovale was detected in 2013 in the northwest of the country, being the first report of the presence of this species in Ethiopia since the 60 s. The aim of this study was to assess the diagnosis by microscopy and PCR, and demonstrate the presence of other Plasmodium species in the country. METHODS: The survey was conducted in Bulbula, situated in the Rift Valley (West Arsi Province, Oromia Region). From December 2010 to October 2011, 3060 samples were collected from patients with symptoms of malaria; the diagnosis of malaria was done by microscopy and confirmation by PCR. RESULTS: 736 samples were positive for malaria by microscopy. After removing the 260 samples (109 positives and 151 negatives) for which it was not possible to do PCR, there were a total of 2800 samples, 1209 are used for its confirmation by PCR and quality control (627 are positives and 582 negatives by microscopy). From the 627 positive samples, 604 were confirmed as positive by PCR, 23 false positives were detected, and the group of 582 negative samples, 184 were positive by PCR (false negatives), which added to the previous positive samples is a total of 788, positive samples for some species of Plasmodium sp. 13.3 % more positives were detected with the PCR than the microscopy. Importantly, 23 samples were detected by PCR as P. ovale, after the sequencing of these samples was determined as P. ovale curtisi. CONCLUSIONS: The PCR detected more positive samples than the microscopy; in addition, P. ovale and P. ovale/P. vivax were detected that had not been detected by microscopy, which can affect in the infection control.


Subject(s)
Malaria/diagnosis , Plasmodium ovale/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Community Health Centers , Ethiopia/epidemiology , Female , Humans , Infant , Infant, Newborn , Malaria/epidemiology , Malaria/parasitology , Male , Microscopy , Middle Aged , Multiplex Polymerase Chain Reaction , Polymerase Chain Reaction , Prevalence , Sensitivity and Specificity , Young Adult
2.
Int J Health Geogr ; 5: 27, 2006 Jun 19.
Article in English | MEDLINE | ID: mdl-16784527

ABSTRACT

BACKGROUND: In this paper we analyse the Plasmodium sp. prevalence in three villages with different isolation status on the island of Bioko (Equatorial Guinea) where malaria is a hyper-endemic disease. We also describe the genetic diversity of P. falciparum, using several plasmodia proteins as markers which show a high degree of polymorphism (MSP-1 and MSP-2). The results obtained from three different populations are compared in order to establish the impact of human movements and interventions. METHODS: Plasmodium sp. were analysed in three villages on Bioko Island (Equatorial Guinea), one of which (Southern) is isolated by geographical barriers. The semi-nested multiplex polymerase chain reaction (PCR) technique was used to determine the prevalence of the four human plasmodia species. The genotyping and frequency of P. falciparum populations were determined by PCR assay target polymorphism regions of the merozoite surface proteins 1 and 2 genes (MSP-1 and MSP-2). RESULTS: The data obtained show that there are no differences in plasmodia population flow between the Northwest and Eastern regions as regards the prevalence of the different Plasmodium species. The Southern population, on the other hand, shows a minor presence of P. malariae and a higher prevalence of P. ovale, suggesting some kind of transmission isolated from the other two. The P. falciparum genotyping in the different regions points to a considerable allelic diversity in the parasite population on Bioko Island, although this is somewhat higher in the Southern region than the others. There was a correlation between parasitaemia levels and the age of the individual with the multiplicity of infection (MOI). CONCLUSION: Results could be explained by the selection of particular MSP alleles. This would tend to limit diversity in the parasite population and leading up to the extinction of rare alleles. On the other hand, the parasite population in the isolated village has less outside influence and the diversity of P. falciparum is maintained higher. The knowledge of parasite populations and their relationships is necessary to study their implications for control intervention.


Subject(s)
Parasitemia/epidemiology , Plasmodium falciparum/genetics , Alleles , Animals , Child , Child, Preschool , Equatorial Guinea/epidemiology , Genetic Variation , Humans , Parasitemia/classification , Plasmodium falciparum/isolation & purification , Polymerase Chain Reaction , Prevalence , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...