Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 273: 116451, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33486243

ABSTRACT

Plastic pollution is emerging as a potential threat to the marine environment. In the current study, we selected seagrass meadows, known to efficiently trap organic and inorganic particles, to investigate the concentrations and dynamics of microplastics in their soil. We assessed microplastic contamination and accumulation in 210Pb dated soil cores collected in Posidonia oceanica meadows at three locations along the Spanish Mediterranean coast, with two sites located in the Almería region (Agua Amarga and Roquetas) and one at Cabrera Island (Santa Maria). Almería is known for its intense agricultural industry with 30 000 ha of plastic-covered greenhouses, while the Cabrera Island is situated far from urban areas. Microplastics were extracted using enzymatic digestion and density separation. The particles were characterized by visual identification and with Fourier-transformed infrared (FTIR) spectroscopy, and related to soil age-depth chronologies. Our findings showed that the microplastic contamination and accumulation was negligible until the mid-1970s, after which plastic particles increased dramatically, with the highest concentrations of microplastic particles (MPP) found in the recent (since 2012) surface soil of Agua Amarga (3819 MPP kg-1), followed by the top-most layers of the soil of the meadows in Roquetas (2173 kg-1) and Santa Maria (68-362 kg-1). The highest accumulation rate was seen in the Roquetas site (8832 MPP m-2 yr-1). The increase in microplastics in the seagrass soil was associated to land-use change following the intensification of the agricultural industry in the area, with a clear relationship between the development of the greenhouse industry in Almería and the concentration of microplastics in the historical soil record. This study shows a direct linkage between intense anthropogenic activity, an extensive use of plastics and high plastic contamination in coastal marine ecosystems such as seagrass meadows. We highlight the need of proper waste management to protect the coastal environment from continuous pollution.

2.
Sci Total Environ ; 768: 144352, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33454472

ABSTRACT

Seagrasses are distributed all along the coast of the Mediterranean Sea being Posidonia oceanica and Cymodocea nodosa the most common species. They promote sedimentation, leading to the formation of well-structured soils. Over the last decade, a growing attention has been paid to their role as CO2 sinks in the form of organic carbon (Corg) and to their use as environmental archives. However, most of the knowledge about pedogenetic processes in these soils refer to the rhizosphere. This study aims to understand seagrass soils biogeochemistry in the rhizosphere and below, which in turn can help to understand their long term formation processes. Fifteen cores were strategically sampled along a 350 km stretch of the Southeast Iberian coast, and analyzed for elemental composition (XRF core-scanning), magnetic susceptibility, Corg content and gran size distribution. The cores were dated by 210Pb and 14C-AMS techniques to estimate soil accretion. Principal component analysis was used to explore the main geochemical processes linked to soil formation. The results showed that terrestrial runoff plays a key role in meadow soil composition. Furthermore, Corg accumulation did not follow any general depth trend in our soil records, suggesting that temporal variation in Corg inputs is an important factor in determining carbon depth distribution within the soil. We obtained evidence that the establishment of well-developed, stable C. nodosa meadows in the Mediterranean Sea may be promoted by adverse environmental conditions to P. oceanica settlement. Metal's behavior within the meadow deposit and their interaction with organic matter and carbonates is unclear. The results presented in this paper highlight the importance of the influence of land-based inputs in the characteristics of seagrass meadow deposits, highly determining their Corg content, as well as the need for further studies on metal behavior, to understand their full potential as environmental records.


Subject(s)
Alismatales , Soil , Carbon , Geologic Sediments , Mediterranean Sea
3.
Sci Total Environ ; 754: 142117, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33254936

ABSTRACT

Seagrasses are marine angiosperms that can form highly productive, and valuable underwater meadows, which are currently in regression. A reliable assessment of their status and future evolution requires studies encompassing long-term temporal scales. With the aim of understanding seagrass ecosystem dynamics over the last centuries and millennia, twelve sediment cores were studied from seagrass meadows located along the Andalusian coast and at the Cabrera Island (western Mediterranean). This study is pioneer in using Fourier Transform Infrared (FTIR) spectroscopy as a tool to study environmental change in seagrass sediments. FTIR is a form of vibrational spectroscopy that provides information about the sediment chemical composition. Principal Component Analysis (PCA) was used to summarise spatio-temporal data of the FTIR vibratory peaks in combination with climate and geochemical proxy data. Several PCA signals were identified: (1) one likely related to the relative changes of the main primary producers and the sedimentary environment (carbonate or siliciclastic sediments, with aromatic or aliphatic organic matter); (2) the marine community production (polysaccharides, total organic matter content and biogenic silica); and (3) the seagrass production (aromatics, carbohydrates, phenols, proteins and lipids). A decrease of seagrass production along the mainland coast was evident since AD ~1850, which may be due to combined negative impacts of seawater warming, local anthropogenic impacts, and extreme setting conditions. The legacy of these combined stressors might have influenced the current poor state of seagrass meadows in the Alboran Sea. Our results also revealed a significant long-term trade-off between the level of seagrass production and its temporal stability (calculated as the inverse of the coefficient of variation). This study provides a reliable baseline data, helping to assess the magnitude of seagrass regression and its drivers. This paleoecological information can help design more targeted management plans and identify meadows where local management could be more efficient.


Subject(s)
Alismatales , Ecosystem , Algorithms , Climate , Lipids , Principal Component Analysis
4.
PLoS One ; 7(2): e30454, 2012.
Article in English | MEDLINE | ID: mdl-22312426

ABSTRACT

The maximum size and age that clonal organisms can reach remains poorly known, although we do know that the largest natural clones can extend over hundreds or thousands of metres and potentially live for centuries. We made a review of findings to date, which reveal that the maximum clone age and size estimates reported in the literature are typically limited by the scale of sampling, and may grossly underestimate the maximum age and size of clonal organisms. A case study presented here shows the occurrence of clones of slow-growing marine angiosperm Posidonia oceanica at spatial scales ranging from metres to hundreds of kilometres, using microsatellites on 1544 sampling units from a total of 40 locations across the Mediterranean Sea. This analysis revealed the presence, with a prevalence of 3.5 to 8.9%, of very large clones spreading over one to several (up to 15) kilometres at the different locations. Using estimates from field studies and models of the clonal growth of P. oceanica, we estimated these large clones to be hundreds to thousands of years old, suggesting the evolution of general purpose genotypes with large phenotypic plasticity in this species. These results, obtained combining genetics, demography and model-based calculations, question present knowledge and understanding of the spreading capacity and life span of plant clones. These findings call for further research on these life history traits associated with clonality, considering their possible ecological and evolutionary implications.


Subject(s)
Alismatales/physiology , Endangered Species , Life Expectancy , Alismatales/genetics , Alismatales/growth & development , Microsatellite Repeats/genetics , Probability , Time Factors
5.
Mar Pollut Bull ; 56(9): 1618-29, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18614182

ABSTRACT

This paper provides a synthesis of the EU project MedVeg addressing the fate of nutrients released from fish farming in the Mediterranean with particular focus on the endemic seagrass Posidonia oceanica habitat. The objectives were to identify the main drivers of seagrass decline linked to fish farming and to provide sensitive indicators of environmental change, which can be used for monitoring purposes. The sedimentation of waste particles in the farm vicinities emerges as the main driver of benthic deterioration, such as accumulation of organic matter, sediment anoxia as well as seagrass decline. The effects of fish farming on P. oceanica meadows are diverse and complex and detected through various metrics and indicators. A safety distance of 400 m is suggested for management of P. oceanica near fish farms followed by establishment of permanent seagrass plots revisited annually for monitoring the health of the meadows.


Subject(s)
Alismatales/growth & development , Aquaculture , Ecosystem , Feces/chemistry , Fishes , Animals , Geologic Sediments/analysis , Mediterranean Sea , Population Dynamics , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis
6.
Mar Pollut Bull ; 56(7): 1332-42, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18511087

ABSTRACT

Fish farms represent a growing source of anthropogenic disturbance to benthic communities, and efficient predictors of such impacts are urgently needed. We explored the effects of fish farm benthic organic and nutrient inputs on the population dynamics of a key seagrass species (Posidonia oceanica) in four Mediterranean deep meadows adjacent to sea bream and sea bass farms. We performed two annual plant censuses on permanent plots at increasing distance from farms and measured benthic sedimentation rates around plots. High shoot mortality rates were recorded near the cages, up to 20 times greater than at control sites. Recruitment rates increased in variability but could not compensate mortality, leading to rapid seagrass decline within the first 100 m from cages. Seagrass mortality increased with total sedimentation rates (K=0.55, p<0.0002), and with organic matter (K=0.50, p=0.001), total nitrogen (K=0.46, p=0.002) and total phosphorus (K=0.56, p<3.10(-5)) inputs. P. oceanica decline accelerated above a phosphorus loading threshold of 50mg m(-2)day(-1). Phosphorus benthic sedimentation rate seems a powerful predictor of seagrass mortality from fish farming. Coupling direct measurements of benthic sedimentation rates with dynamics of key benthic species is proposed as an efficient strategy to predict fish farm impacts to benthic communities.


Subject(s)
Alismatales/physiology , Fisheries , Geologic Sediments , Animals , Geography , Mediterranean Sea , Models, Biological , Population Density , Population Dynamics , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...