Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cereb Cortex ; 33(10): 6038-6050, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36573422

ABSTRACT

Choice selection strategies and decision-making are typically investigated using multiple-choice gambling paradigms that require participants to maximize expected value of rewards. However, research shows that performance in such paradigms suffers from individual biases towards the frequency of gains such that users often choose smaller frequent gains over larger rarely occurring gains, also referred to as melioration. To understand the basis of this subjective tradeoff, we used a simple 2-choice reward task paradigm in 186 healthy human adult subjects sampled across the adult lifespan. Cortical source reconstruction of simultaneously recorded electroencephalography suggested distinct neural correlates for maximizing reward magnitude versus frequency. We found that activations in the parahippocampal and entorhinal areas, which are typically linked to memory function, specifically correlated with maximization of reward magnitude. In contrast, maximization of reward frequency was correlated with activations in the lateral orbitofrontal cortices and operculum, typical areas involved in reward processing. These findings reveal distinct neural processes serving reward frequency versus magnitude maximization that can have clinical translational utility to optimize decision-making.


Subject(s)
Gambling , Prefrontal Cortex , Adult , Humans , Electroencephalography , Reward , Decision Making
2.
J Neurosci ; 41(26): 5699-5710, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34021043

ABSTRACT

α Oscillations in sensory cortex, under frontal control, desynchronize during attentive preparation. Here, in a selective attention study with simultaneous EEG in humans of either sex, we first demonstrate that diminished anticipatory α synchrony between the mid-frontal region of the dorsal attention network and ventral visual sensory cortex [frontal-sensory synchrony (FSS)] significantly correlates with greater task performance. Then, in a double-blind, randomized controlled study in healthy adults, we implement closed-loop neurofeedback (NF) of the anticipatory α FSS signal over 10 d of training. We refer to this closed-loop experimental approach of rapid NF integrated within a cognitive task as cognitive NF (cNF). We show that cNF results in significant trial-by-trial modulation of the anticipatory α FSS measure during training, concomitant plasticity of stimulus-evoked α/θ responses, as well as transfer of benefits to response time (RT) improvements on a standard test of sustained attention. In a third study, we implement cNF training in children with attention deficit hyperactivity disorder (ADHD), replicating trial-by-trial modulation of the anticipatory α FSS signal as well as significant improvement of sustained attention RTs. These first findings demonstrate the basic mechanisms and translational utility of rapid cognitive-task-integrated NF.SIGNIFICANCE STATEMENT When humans prepare to attend to incoming sensory information, neural oscillations in the α band (8-14 Hz) undergo desynchronization under the control of prefrontal cortex. Here, in an attention study with electroencephalography, we first show that frontal-sensory synchrony (FSS) of α oscillations during attentive preparation significantly correlates with task performance. Then, in a randomized controlled study in healthy adults, we show that neurofeedback (NF) training of this α FSS signal within the attention task is feasible. We show that this rapid cognitive NF (cNF) approach engenders plasticity of stimulus-evoked neural responses, and improves performance on a standard test of sustained attention. In a final study, we implement cNF in children with attention deficit hyperactivity disorder (ADHD), replicating the improvement of sustained attention found in adults.


Subject(s)
Alpha Rhythm/physiology , Attention Deficit Disorder with Hyperactivity , Attention/physiology , Cerebral Cortex/physiology , Neurofeedback/methods , Adult , Attention Deficit Disorder with Hyperactivity/physiopathology , Child , Double-Blind Method , Female , Goals , Humans , Male , Neurofeedback/physiology , Neuronal Plasticity/physiology , Reaction Time/physiology
3.
Neuroimage ; 231: 117641, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33338609

ABSTRACT

A fundamental set of cognitive abilities enable humans to efficiently process goal-relevant information, suppress irrelevant distractions, maintain information in working memory, and act flexibly in different behavioral contexts. Yet, studies of human cognition and their underlying neural mechanisms usually evaluate these cognitive constructs in silos, instead of comprehensively in-tandem within the same individual. Here, we developed a scalable, mobile platform, "BrainE" (short for Brain Engagement), to rapidly assay several essential aspects of cognition simultaneous with wireless electroencephalography (EEG) recordings. Using BrainE, we rapidly assessed five aspects of cognition including (1) selective attention, (2) response inhibition, (3) working memory, (4) flanker interference and (5) emotion interference processing, in 102 healthy young adults. We evaluated stimulus encoding in all tasks using the EEG neural recordings, and isolated the cortical sources of the spectrotemporal EEG dynamics. Additionally, we used BrainE in a two-visit study in 24 young adults to investigate the reliability of the neuro-cognitive data as well as its plasticity to transcranial magnetic stimulation (TMS). We found that stimulus encoding on multiple cognitive tasks could be rapidly assessed, identifying common as well as distinct task processes in both sensory and cognitive control brain regions. Event related synchronization (ERS) in the theta (3-7 Hz) and alpha (8-12 Hz) frequencies as well as event related desynchronization (ERD) in the beta frequencies (13-30 Hz) were distinctly observed in each task. The observed ERS/ERD effects were overall anticorrelated. The two-visit study confirmed high test-retest reliability for both cognitive and neural data, and neural responses showed specific TMS protocol driven modulation. We also show that the global cognitive neural responses are sensitive to mental health symptom self-reports. This first study with the BrainE platform showcases its utility in studying neuro-cognitive dynamics in a rapid and scalable fashion.


Subject(s)
Attention/physiology , Brain Mapping/methods , Brain/physiology , Cognition/physiology , Memory, Short-Term/physiology , Psychomotor Performance/physiology , Adolescent , Adult , Electroencephalography/methods , Female , Humans , Male , Transcranial Magnetic Stimulation/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...