Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Biomed Mater Res A ; 112(3): 373-389, 2024 03.
Article in English | MEDLINE | ID: mdl-37902409

ABSTRACT

Biomaterials with nanoscale topography have been increasingly investigated for medical device applications to improve tissue-material interactions. This study assessed the impact of nanoengineered titanium surface domain sizes on early biological responses that can significantly affect tissue interactions. Nanostructured titanium coatings with distinct nanoscale surface roughness were deposited on quartz crystal microbalance with dissipation (QCM-D) sensors by physical vapor deposition. Physico-chemical characterization was conducted to assess nanoscale surface roughness, nano-topographical morphology, wettability, and atomic composition. The results demonstrated increased projected surface area and hydrophilicity with increasing nanoscale surface roughness. The adsorption properties of albumin and fibrinogen, two major plasma proteins that readily encounter implanted surfaces, on the nanostructured surfaces were measured using QCM-D. Significant differences in the amounts and viscoelastic properties of adsorbed proteins were observed, dependent on the surface roughness, protein type, protein concentration, and protein binding affinity. The impact of protein adsorption on subsequent biological responses was also examined using qualitative and quantitative in vitro evaluation of human platelet adhesion, aggregation, and activation. Qualitative platelet morphology assessment indicated increased platelet activation/aggregation on titanium surfaces with increased roughness. These data suggest that nanoscale differences in titanium surface roughness influence biological responses that may affect implant integration.


Subject(s)
Fibrinogen , Titanium , Humans , Adsorption , Fibrinogen/chemistry , Titanium/pharmacology , Titanium/chemistry , Surface Properties , Albumins
2.
Toxicol Sci ; 188(2): 261-275, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35708658

ABSTRACT

Ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) have been investigated for biomedical applications, including novel contrast agents, magnetic tracers for tumor imaging, targeted drug delivery vehicles, and magneto-mechanical actuators for hyperthermia and thrombolysis. Despite significant progress, recent clinical reports have raised concerns regarding USPION safety related to endothelial cell dysfunction; however, there is limited information on factors contributing to these clinical responses. The influence of USPION surface chemistry on nanoparticle interactions with proteins may impact endothelial cell function leading to adverse responses. Therefore, the goal of this study was to assess the effects of carboxyl-functionalized USPION (CU) or amine-functionalized USPION (AU) (approximately 30 nm diameter) on biological responses in human coronary artery endothelial cells. Increased protein adsorption was observed for AU compared with CU after exposure to serum proteins. Exposure to CU, but not AU, resulted in a concentration-dependent decrease in cell viability and perinuclear accumulation inside cytoplasmic vesicles. Internalization of CU was correlated with endothelial cell functional changes under non-cytotoxic conditions, as evidenced by a marked decreased expression of endothelial-specific adhesion proteins (eg, vascular endothelial-cadherin and platelet endothelial cell adhesion molecule-1) and increased endothelial permeability. Evaluation of downstream signaling indicated endothelial permeability is associated with actin cytoskeleton remodeling, possibly elicited by intracellular events involving reactive oxygen species, calcium ions, and the nanoparticle cellular uptake pathway. This study demonstrated that USPION surface chemistry significantly impacts protein adsorption and endothelial cell uptake, viability, and barrier function. This information will advance the current toxicological profile of USPION and improve development, safety assessment, and clinical outcomes of USPION-enabled medical products.


Subject(s)
Nanoparticles , Protein Corona , Humans , Endothelial Cells/metabolism , Ferric Compounds/metabolism , Magnetic Iron Oxide Nanoparticles , Protein Corona/metabolism
3.
Nanoscale Res Lett ; 17(1): 33, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35258742

ABSTRACT

Photodynamic therapy (PDT) utilizes photosensitizers (PSs) to produce reactive oxygen species (ROSs) upon irradiation, which causes the shutdown of vessels and deprives the tumor of nutrients and oxygen, and in turn induces adverse effects on the immune system. However, significant efforts are needed to increase the efficiency in PDT in terms of light delivery to specific PSs for the clinical treatment of tumors located deep under the skin. Even though PDT offers a disease site-specific treatment modality, current efforts are directed to improve the solubility (in body fluids and injectable solvents), photostability, amphiphilicity (for tissue penetration), elimination, and systemic toxicity of traditional PSs based on porphyrin derivatives. Nanostructured materials show promising features to achieve most of such combined efforts. They can be artificially engineered to carry multiple theranostic agents onto targeted tumor sites. However, recent studies on photosensitive Cd-based nanostructures, mostly used in PDT, indicate that leeching of Cd2+ ions is stimulated when they are exposed to harsh biological conditions for continuous periods of time, thus making them acutely toxic and hindering their applications in in vivo settings. Since nanostructured materials are not completely immune to degradation, great strides have been made to seek new alternatives. In this review, we focus on the latest advances of Cd-free nanostructured metal transition sulfides (MTSs) as alternative PSs and study their high-energy transfer efficiency, rational designs, and potential applications in cancer-targeted PDT. Nanostructured MTSs are discussed in the context of their versatility to serve as phototherapy agents and superior properties, including their strong absorption in the NIR region, excellent photothermal conversion efficiency, controlled reactive oxygen species (ROS) production, versatile surface chemistry, high fluorescence, and structural and thermal stability. We discuss the latest advancements in correlating the self-aggregation of MTSs with their passive tumor cell targeting, highlighting their ability to efficiently produce ROSs, and mitigating their dark toxicity through polymeric functionalization. Treatment of deep-seated tumors by using these PSs upon preferential uptake by tumor tissues (due to the enhanced permeability and retention effect) is also reviewed. We finally summarize the main future perspectives of MTSs as next-generation PSs within the context of cancer theranostics.

4.
ACS Omega ; 6(11): 7598-7604, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33778270

ABSTRACT

We investigated the magnetic control of the Mn photoluminescence (PL) in iron oxide/l-cysteine-capped zinc sulfide (Fe3O4/l-cys ZnS:Mn) nanocomposites via temperature- and field-dependent PL intensity studies. Fe3O4/l-cys ZnS:Mn was synthesized following a wet chemical deposition route and then its physicochemical, morphological, and magnetic properties were characterized. X-ray diffraction analysis indicates the formation of a semiconducting composite material with coexisting phases with high crystalline quality and purity. Electron microscopy reveals that the surfaces of the nanoparticles are clean and smooth, sized between 15 and 30 nm, without any sheathed amorphous phase. Vibrating sample magnetometry and UV light excitation show a clear superparamagnetic behavior and an optical response of Fe3O4/l-cys ZnS:Mn, which revealed its bifunctional nature. Magnetoluminescent coupling at 1.0 T is seen in the form of PL suppression in Fe3O4/l-cys ZnS:Mn from low temperature (10 K) to room temperature, with a PL intensity drop of ∼5% at 10 K and a maximum drop of 10% at room temperature. This observation can be explained by restriction of the energy transfer to Mn orbitals through magnetic ordering and Jahn-Teller distortions. Fe3O4/l-cys ZnS:Mn shows promise as a bifunctional biocompatible compound that can be applied as a theranostic agent and a quantum computational element. A deeper understanding behind the magnetic control of the optical response in bifunctional materials brings forth new arenas in diagnostics and drug delivery.

5.
Nanotheranostics ; 5(3): 309-320, 2021.
Article in English | MEDLINE | ID: mdl-33732602

ABSTRACT

Surface functionalization of nanoparticles (NPs) may alter their biological interactions such as uptake by alveolar macrophages (AMs). Pulmonary delivery of gold NPs (Au NPs) has theranostic potential due to their optoelectronic properties, minimal alveoli to blood translocation, and possibility of specific cell targeting. Here, we examined whether coating Au NPs with transferrin alters their protein corona, uptake by macrophages, and pulmonary translocation. Methods: Rats were intratracheally instilled with transferrin-coated Au NPs (Tf-Au NPs) or polyethylene glycol-coated Au NPs (PEG-Au NPs). AMs were collected and processed for quantitation of Au cell uptake using ICP-MS and electron microscopy. Au retention in the lungs and other organs was also determined. The uptake of fluorescently labeled Tf-Au NPs and PEG-Au NPs by monocyte-derived human macrophages was also evaluated in vitro. Results: We showed that Tf-Au NPs were endocytosed by AMs and were retained in the lungs to a greater extent than PEG-Au NPs. Both Au NPs acquired similar protein coronas after incubation in rat broncho-alveolar lavage fluid (BALf). The translocation of Au from both NPs to other organs was less than 0.5% of the instilled dose. Transferrin coating enhanced the uptake of Au NPs by primary monocyte-derived human macrophages. Conclusions: We report that coating of NP surface with transferrin can target them to rat AMs and human monocyte-derived macrophages. NP functionalization with transferrin may enhance NP-based therapeutic strategies for lung diseases.


Subject(s)
Gold/chemistry , Lung/metabolism , Metal Nanoparticles/chemistry , Transferrin/chemistry , Adult , Animals , Bronchoalveolar Lavage Fluid , Drug Delivery Systems , Humans , Macrophages, Alveolar/metabolism , Male , Pharmacokinetics , Protein Corona/metabolism , Rats , Rats, Wistar
6.
J Appl Toxicol ; 40(7): 918-930, 2020 07.
Article in English | MEDLINE | ID: mdl-32080871

ABSTRACT

Ultrasmall superparamagnetic iron oxide nanoparticles (USPION) possess reactive surfaces, are metabolized and exhibit unique magnetic properties. These properties are desirable for designing novel theranostic biomedical products; however, toxicity mechanisms of USPION are not completely elucidated. The goal of this study was to investigate cell interactions (uptake and cytotoxicity) of USPION using human coronary artery endothelial cells as a vascular cell model. Polyvinylpirrolidone-coated USPION were characterized: average diameter 17 nm (transmission electron microscopy [TEM]), average hydrodynamic diameter 44 nm (dynamic light scattering) and zeta potential -38.75 mV. Cells were exposed to 0 (control), 25, 50, 100 or 200 µg/mL USPION. Concentration- and time-dependent cytotoxicity were observed after 3-6 hours through 24 hours of exposure using Alamar Blue and Real-Time Cell Electronic Sensing assays. Cell uptake was evaluated by imaging using live-dead confocal microscopy, actin and nuclear fluorescent staining, and TEM. Phase-contrast, confocal microscopy, and TEM imaging showed significant USPION internalization as early as 3 hours after exposure to 25 µg/mL. TEM imaging demonstrated particle internalization in secondary lysosomes with perinuclear localization. Three orthogonal assays were conducted to assess apoptosis. TUNEL staining demonstrated a marked increase in fragmented DNA, a response pathognomonic of apoptosis, after a 4-hour exposure. Cells subjected to agarose gel electrophoresis exhibited degraded DNA 3 hours after exposure. Caspase-3/7 activity increased after a 3-hour exposure. USPION uptake resulted in cytotoxicity involving apoptosis and these results contribute to further mechanistic understanding of the USPION toxicity in vitro in cardiovascular endothelial cells.


Subject(s)
Apoptosis/drug effects , Biological Transport/drug effects , Cells, Cultured/drug effects , Coronary Vessels/drug effects , Cytotoxins/adverse effects , Endothelial Cells/drug effects , Magnetic Iron Oxide Nanoparticles/toxicity , Humans
7.
Sci Rep ; 9(1): 5633, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30948768

ABSTRACT

The engineering of materials with controlled magnetic properties by means other than a magnetic field is of great interest in nanotechnology. In this study, we report engineered magnetic graphene oxide (MGO) in the nanocomposite form of iron oxide nanoparticles (IO)-graphene oxide (GO) with tunable core magnetism and magnetic resonance transverse relaxivity (r2). These tunable properties are obtained by varying the IO content on GO. The MGO series exhibits r2 values analogous to those observed in conventional single core and cluster forms of IO in different size regimes-motional averaging regime (MAR), static dephasing regime (SDR), and echo-limiting regime (ELR) or slow motion regime (SMR). The maximum r2 of 162 ± 5.703 mM-1s-1 is attained for MGO with 28 weight percent (wt%) content of IO on GO and hydrodynamic diameter of 414 nm, which is associated with the SDR. These findings demonstrate the clear potential of magnetic graphene oxide for magnetic resonance imaging (MRI) applications.


Subject(s)
Graphite/chemistry , Contrast Media , Ferric Compounds , Magnetic Phenomena , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Magnetics , Nanocomposites/chemistry , Nanoparticles , Physical Phenomena , Protons
8.
ACS Appl Bio Mater ; 1(1): 79-89, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-30094416

ABSTRACT

Conventional T1- or T2-weighted single mode contrast-enhanced magnetic resonance imaging (MRI) may produce false results. Thereby, there is a need to develop dual contrast agents, T1- and T2-weighted, for more accurate MRI imaging. The dual contrast agents should possess high magnetic resonance (MR) relaxivities, targeted tumor linking, and minimum recognition by the immune system. We have developed nitrodopamine-PEG grafted single core truncated cubic iron oxide nanoparticles (ND-PEG-tNCIOs) capable of producing marked dual contrasts in MRI with enhanced longitudinal and transverse relaxivities of 32 ± 1.29 and 791 ± 38.39 mM-1 s-1, respectively. Furthermore, the ND-PEG-tNCIOs show excellent colloidal stability in physiological buffers and higher cellular internalization in cancerous cells than in phagocytic cells, indicating the immune evasive capability of the nanoparticles. These findings indicate that tNCIOs are strong candidates for dual contrast MRI imaging, which is vital for noninvasive real-time detection of nascent cancer cells in vivo and for monitoring stem cells transplants.

9.
Nanomaterials (Basel) ; 8(7)2018 Jun 30.
Article in English | MEDLINE | ID: mdl-29966355

ABSTRACT

Nanoparticle-based cancer theranostic agents generally suffer of poor dispersability in biological media, re-agglomeration over time, and toxicity concerns. To address these challenges, we developed a nanocomposite consisting of chemically-reduced graphene oxide combined with manganese-doped zinc sulfide quantum dots and functionalized with folic acid (FA-rGO/ZnS:Mn). We studied the dispersion stability, Doxorubicin (DOX) loading and release efficiency, target specificity, internalization, and biocompatibility of FA-rGO/ZnS:Mn against folate-rich breast cancer cells, and compared to its uncoated counterpart (rGO/ZnS:Mn). The results indicate that DOX is adsorbed on the graphene surface via π⁻π stacking and hydrophobic interaction, with enhanced loading (~35%) and entrapment (~60%) efficiency that are associated to the chelation of DOX and surface Zn2+ ions. DOX release is favored under acidic conditions reaching a release of up to 95% after 70 h. Membrane integrity of the cells assessed by Lactate dehydrogenase (LDH) release indicate that the surface passivation caused by folic acid (FA) functionalization decreases the strong hydrophobic interaction between the cell membrane wall and the edges/corners of graphene flakes. Chemotherapeutic effect assays reveal that the cancer cell viability was reduced up to ~50% at 3 µg/mL of DOX-FA-rGO/ZnS:Mn exposure, which is more pronounced than those obtained for free DOX at the same doses. Moreover, DOX-rGO/ZnS:Mn did not show any signs of toxicity. An opposite trend was observed for cells that do not overexpress the folate receptors, indicating that FA functionalization endows rGO/ZnS:Mn with an effective ability to discriminate positive folate receptor cancerous cells, enhancing its drug loading/release efficiency as a compact drug delivery system (DDS). This study paves the way for the potential use of functionalized rGO/ZnS:Mn nanocomposite as a platform for targeted cancer treatment.

10.
Nanoscale Res Lett ; 12(1): 312, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28454478

ABSTRACT

Superparamagnetic iron oxide nanoparticles (SPIONs, ~11-nm cores) were PEGylated without anchoring groups and studied as efficient MRI T 2 contrast agents (CAs). The ether group of PEG is efficiently and directly linked to the positively charged surface of SPIONs, and mediated through a dipole-cation covalent interaction. Anchor-free PEG-SPIONs exhibit a spin-spin relaxivity of 123 ± 6 mM-1s-1, which is higher than those of PEG-SPIONs anchored with intermediate biomolecules, iron oxide nanoworms, or Feridex. They do not induce a toxic response for Fe concentrations below 2.5 mM, as tested on four different cell lines with and without an external magnetic field. Magnetic resonance phantom imaging studies show that anchor-free PEG-SPIONs produce a significant contrast in the range of 0.1-0.4 [Fe] mM. Our findings reveal that the PEG molecules attached to the cores immobilize water molecules in large regions of ~85 nm, which would lead to blood half-life of a few tens of minutes. This piece of research represents a step forward in the development of next-generation CAs for nascent-stage cancer detection. Contrast-probed anchor-free PEGylated iron oxide contrast agent.

11.
Biosens Bioelectron ; 87: 693-700, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27631684

ABSTRACT

Dopamine (DA) is one of the most important catecholamine neurotransmitters of the human central nervous system, and is involved in many behavioral responses and brain functions. Below normal DA levels in biological fluids can lead to different neurodegenerative conditions. For excess DA levels, a failure in energy metabolism is indicated. In this study, a facile room-temperature phosphorescence sensor is developed to detect DA based on l-cysteine capped Mn doped ZnS quantum dots (l-cys ZnS:Mn QDs). The QDs display a prominent orange emission band peaking at ~598nm, which is strongly quenched upon addition of DA in alkaline medium. The sensor exhibits a linear working range of ~0.15-3.00µM, and a limit of detection of ~7.80nM. These results are explained in terms of a pH-dependent electron transfer process, in which the oxidized dopamine quinone functions as an efficient electron acceptor. The QDs-based sensor shows a high selectivity to DA over common interfering biomolecules (including some amino acids, ascorbic acid, chloride and glucose). The sensor has been successfully applied for the detection of DA in urine samples, yielding recoveries as high as 93%. Our findings indicate that our developed sensor exhibits high sensitivity and reproducibility to determine DA even in biological fluids where DA is at low levels, e.g., in the central nervous system, which is the usual clinical profile of a neurodegenerative disorder associated to the Parkinson's disease.


Subject(s)
Cysteine/chemistry , Dopamine/urine , Luminescent Measurements/methods , Manganese/chemistry , Quantum Dots/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry , Biosensing Techniques/methods , Dopamine/analysis , Humans , Limit of Detection , Quantum Dots/ultrastructure , Reproducibility of Results , Temperature
12.
Nanotechnology ; 27(8): 085703, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26807611

ABSTRACT

We report the tuning of the internal Mn photoluminescence (PL) transition of magnetically-ordered Sr-doped lanthanum manganite (LSMO)/Mn-doped zinc sulfide (ZnS:Mn) nanocomposites (NCs) by applying a static magnetic field in the range of 0-1 T below the critical temperature of ∼225 K. To do that, we have systematically fabricated LSMO/ZnS:Mn at different concentrations (1:1, 1:3, 1:5 and 1:10 wt%) via a straightforward solid-state reaction. X-ray diffraction and Raman analyses reveal that both phases coexist with a high degree of crystallinity and purity. Electron microscopy indicates that the NCs are almost spherical with an average crystal size of ∼6 nm, and that their surfaces are clean and smooth. The bifunctional character of LSMO/ZnS:Mn was evidenced by vibrating sample magnetometry and PL spectroscopy analyses, which show a marked ferromagnetic behavior and a broad, intense Mn orange emission band at room temperature. Moreover, the LSMO/ZnS:Mn at 1:3 wt% exhibits magneto-luminescent (ML) coupling below 225 K, and reaches the largest suppression of Mn-band PL intensity (up to ∼10%) at 150 K, when a magnetic field of 1.0 T is applied. The ML effect persists at magnetic fields as low as 0.2 T at 8 K, which can be explained by evoking a magnetic-ordering-induced spin-dependent restriction of the energy transfer to Mn states. No ML effect was observed in bare ZnS:Mn nanoparticles under the same experimental parameters. Our findings suggest that this NC can be considered as a new ML compound, similar to FeCo/InGaN-GaN and LSMO/ZnO NCs, useful as q-bits for quantum computation. The results presented here bring forth new avenues to better understand the interaction between semiconductors and perovskites, and exploit their synergistic effects in magneto-optics, spintronics and nanoelectronics.

13.
J Nanopart Res ; 17(12): 461, 2015.
Article in English | MEDLINE | ID: mdl-26692814

ABSTRACT

ABSTRACT: We report here the versatility of Mn-doped ZnS quantum dots (ZnS:Mn QDs) synthesized in aqueous medium for generating reactive oxygen species and for detecting cells. Our experiments provide evidence leading to the elimination of Cd-based cores in CdSe/ZnS systems by substitution of Mn-doped ZnS. Advanced electron microscopy, X-ray diffraction, and optical spectroscopy were applied to elucidate the formation, morphology, and dispersion of the products. We study for the first time the ability of ZnS:Mn QDs to act as immobilizing agents for Tyrosinase (Tyr) enzyme. It was found that ZnS:Mn QDs show no deactivation of Tyr enzyme, which efficiently catalyzed the hydrogen peroxide (H2O2) oxidation and its eventual reduction (-0.063 V vs. Ag/AgCl) on the biosensor surface. The biosensor showed a linear response in the range of 12 µmol/L-0.1 mmol/L at low operation potential. Our observations are explained in terms of a catalase-cycled kinetic mechanism based on the binding of H2O2 to the axial position of one of the active copper sites of the oxy-Tyr during the catalase cycle to produce deoxy-Tyr. A singlet oxygen quantum yield of 0.62 in buffer and 0.54 in water was found when ZnS:Mn QDs were employed as a photosensitizer in the presence of a chemical scavenger and a standard dye. These results are consistent with a chemical trapping energy transfer mechanism. Our results also indicate that ZnS:Mn QDs are well tolerated by HeLa Cells reaching cell viabilities as high as 88 % at 300 µg/mL of QDs for 24 h of incubation. The ability of ZnS:Mn QDs as luminescent nanoprobes for bioimaging is also discussed.

14.
Nanoscale ; 7(42): 17664-71, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26465090

ABSTRACT

We report a comprehensive quantitative study of the production of refined bio-crudes via a controlled hydrothermal liquefaction (HTL) process using Ulva fasciata macroalgae (UFMA) as biomass and ultrananocrystalline Fe3O4 (UNCFO) as catalyst. X-ray diffraction and electron microscopy were applied to elucidate the formation of the high-quality nanocatalysts. Gas chromatography-mass spectroscopy (GC-MS) and CHNS analyses showed that the bio-crude yield and carbon/oxygen ratios increase as the amount of UNCFO increases, reaching a peak value of 32% at 1.25 wt% (a 9% increase when compared to the catalyst-free yield). The bio-crude is mainly composed of fatty acids, alcohols, ketones, phenol and benzene derivatives, and hydrocarbons. Their relative abundance changes as a function of catalyst concentration. FTIR spectroscopy and vibrating sample magnetometry revealed that the as-produced bio-crudes are free of iron species, which accumulate in the generated bio-chars. Our findings also indicate that the energy recovery values via the HTL process are sensitive to the catalyst loading, with a threshold loading of 1.25 wt%. GC-MS studies show that the UNCFO not only influences the chemical nature of the resulting bio-crudes and bio-chars, but also the amount of fixed carbons in the solid residues. The detailed molecular characterization of the bio-crudes and bio-chars catalyzed by UNCFO represents the first systematic study reported using UFMA. This study brings forth new avenues to advance the highly-pure bio-crude production employing active, heterogeneous catalyst materials that are recoverable and recyclable for continuous thermochemical reactions.


Subject(s)
Biofuels , Ferrosoferric Oxide/chemistry , Metal Nanoparticles/chemistry , Biomass , Catalysis , Gas Chromatography-Mass Spectrometry , Metal Nanoparticles/ultrastructure , Microalgae/chemistry , Microalgae/metabolism , Spectroscopy, Fourier Transform Infrared
15.
J Nanopart Res ; 17(6)2015 Jun.
Article in English | MEDLINE | ID: mdl-26949369

ABSTRACT

Cadmium selenide quantum dots (CdSe QDs), inorganic semiconducting nanocrystals, are alluring increased attraction due to their highly refined chemistry, availability, and super tunable optical properties suitable for many applications in different research areas, such as photovoltaics, light-emitting devices, environmental sciences, and nanomedicine. Specifically, they are being widely used in bio-imaging in contrast to organic dyes due to their high brightness and improved photo-stability, and their ability to tune their absorption and emission spectra upon changing the crystal size. The production of CdSe QDs is mostly assisted by trioctylphosphine oxide compound, which acts as solvent or solubilizing agent and renders the QDs soluble in organic compounds (such as toluene, chloroform, and hexane) that are highly toxic. To circumvent the toxicity-related factor in CdSe QDs, we report the synthesis of CdSe QDs capped with thioglycolic acid (TGA) in an aqueous medium, and their biocompatibility in colo-205 cancer cells. In this study, the [Cd2+]/[TGA] ratio was adjusted to 11:1 and the Se concentration (10 and 15 mM) was monitored in order to evaluate its influence on the optical properties and cytocompatibility. QDs resulted to be quite stable in water (after purification) and RPMI cell medium and no precipitation was observed for long contact times, making them appealing for in vitro experiments. The spectroscopy analysis, advanced electron microscopy, and X-ray diffractometry studies indicate that the final products were successfully formed exhibiting an improved optical response. Colo-205 cells being exposed to different concentrations of TGA-capped CdSe QDs for 12, 24, and 48 h with doses ranging from 0.5 to 2.0 mM show high tolerance reaching cell viabilities as high as 93 %. No evidence of cellular apoptotic pathways was observed as pointed out by our Annexin V assays at higher concentrations. Moreover, confocal microscopy analysis conducted to evaluate the intracellular uptake of TGA-CdSe QDs reveal that the TGA-CdSe QDs were uniformly distributed within the cytosolic side of cell membranes. Our results also suggest that under controlled conditions, direct water-soluble TGA-CdSe QDs can be potentially employed for bio-imaging colo-205 cancer cells with minimal adverse effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...